update with new python skill
This commit is contained in:
parent
0a01cc0ac8
commit
1b1c91e4e0
28
python/1.py
28
python/1.py
@ -1,25 +1,9 @@
|
|||||||
# coding=utf-8
|
|
||||||
''' If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.
|
|
||||||
Find the sum of all the multiples of 3 or 5 below 1000. '''
|
|
||||||
|
|
||||||
|
def multi_in_num(limit, base):
|
||||||
|
count = limit // base
|
||||||
|
return (count + 1) * count * base // 2
|
||||||
|
|
||||||
def calc(n, a):
|
def dual_multi_in_num(limit, a, b):
|
||||||
tmp = n / a
|
return multi_in_num(limit, a) + multi_in_num(limit, b) - multi_in_num(limit, a * b)
|
||||||
return (tmp + 1) * tmp * a / 2
|
|
||||||
|
|
||||||
x = 3
|
print(dual_multi_in_num(1000 - 1, 3, 5))
|
||||||
y = 5
|
|
||||||
maxx = 1000
|
|
||||||
|
|
||||||
out = calc(maxx, x) + calc(maxx, y) - calc(maxx, x * y)
|
|
||||||
|
|
||||||
print out
|
|
||||||
|
|
||||||
|
|
||||||
'''
|
|
||||||
total = 0
|
|
||||||
for i in range(1000):
|
|
||||||
if i % 3 == 0 or i % 5 == 0: # 条件为能被 3 或 5 整除
|
|
||||||
total += i # 足条件的数字加入到 total 中
|
|
||||||
print total
|
|
||||||
'''
|
|
||||||
|
43
python/10.py
43
python/10.py
@ -1,42 +1,3 @@
|
|||||||
''' The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
|
|
||||||
Find the sum of all the primes below two million. '''
|
|
||||||
|
|
||||||
def makeP(x):
|
from tools import number_theory
|
||||||
P = [3]
|
print(sum(number_theory.make_prime(2000000)))
|
||||||
p = [3]
|
|
||||||
n = 5
|
|
||||||
while n < x:
|
|
||||||
for i in p:
|
|
||||||
if n % i == 0:
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
P.append(n)
|
|
||||||
n += 2
|
|
||||||
while p[-1] ** 2 < n:
|
|
||||||
p.append(P[len(p)])
|
|
||||||
return P
|
|
||||||
|
|
||||||
|
|
||||||
maxx = 2000000
|
|
||||||
maxxx = int(maxx ** 0.5)
|
|
||||||
|
|
||||||
prime = makeP(maxxx)
|
|
||||||
|
|
||||||
total = 2 + 3 + 5 + 7
|
|
||||||
|
|
||||||
for i in xrange(len(prime) - 1):
|
|
||||||
for x in xrange(prime[i] ** 2 + 2, prime[i + 1] ** 2, 2):
|
|
||||||
for p in prime[:i + 1]:
|
|
||||||
if x % p == 0:
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
total += x
|
|
||||||
|
|
||||||
for x in xrange(prime[-1] ** 2 + 2, maxx, 2):
|
|
||||||
for p in prime:
|
|
||||||
if x % p == 0:
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
total += x
|
|
||||||
|
|
||||||
print total
|
|
||||||
|
92
python/11.py
92
python/11.py
@ -1,45 +1,51 @@
|
|||||||
a = [[8, 2, 22, 97, 38, 15, 0, 40, 0, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8],
|
|
||||||
[49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 0],
|
from functools import reduce
|
||||||
[81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65],
|
|
||||||
[52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36, 91],
|
def get_block(matrix, x, y, size):
|
||||||
|
block = []
|
||||||
|
for i in range(x, x + size):
|
||||||
|
block += matrix[i][y : y + size]
|
||||||
|
return block
|
||||||
|
|
||||||
|
def calc_max(cmpr, l):
|
||||||
|
return max(cmpr, reduce(lambda x, y: x * y, l, 1))
|
||||||
|
|
||||||
|
def block_max(block, size):
|
||||||
|
maxi = 0
|
||||||
|
for i in range(0, size * size, size):
|
||||||
|
maxi = calc_max(maxi, block[i : i + size])
|
||||||
|
for i in range(size):
|
||||||
|
maxi = calc_max(maxi, block[i : size * size : size])
|
||||||
|
maxi = calc_max(maxi, block[0 : size * size : size + 1])
|
||||||
|
maxi = calc_max(maxi, block[size - 1 : size * size - 1: size - 1])
|
||||||
|
return maxi
|
||||||
|
|
||||||
|
def seek_matrix(size, matrix):
|
||||||
|
maxi = 0
|
||||||
|
for x in range(len(matrix) - size):
|
||||||
|
for y in range(len(matrix[0]) - size):
|
||||||
|
maxi = max(maxi, block_max(get_block(matrix, x, y, size), size))
|
||||||
|
return maxi
|
||||||
|
|
||||||
|
print(seek_matrix(4, [
|
||||||
|
[ 8, 2, 22, 97, 38, 15, 0, 40, 0, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8],
|
||||||
|
[49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 0],
|
||||||
|
[81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65],
|
||||||
|
[52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36, 91],
|
||||||
[22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80],
|
[22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80],
|
||||||
[24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50],
|
[24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50],
|
||||||
[32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70],
|
[32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70],
|
||||||
[67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21],
|
[67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21],
|
||||||
[24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72],
|
[24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72],
|
||||||
[21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 0, 61, 33, 97, 34, 31, 33, 95],
|
[21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 0, 61, 33, 97, 34, 31, 33, 95],
|
||||||
[78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56, 92],
|
[78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56, 92],
|
||||||
[16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 0, 17, 54, 24, 36, 29, 85, 57],
|
[16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 0, 17, 54, 24, 36, 29, 85, 57],
|
||||||
[86, 56, 0, 48, 35, 71, 89, 7, 5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58],
|
[86, 56, 0, 48, 35, 71, 89, 7, 5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58],
|
||||||
[19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55, 40],
|
[19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55, 40],
|
||||||
[04, 52, 8, 83, 97, 35, 99, 16, 7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66],
|
[ 4, 52, 8, 83, 97, 35, 99, 16, 7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66],
|
||||||
[88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69],
|
[88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69],
|
||||||
[4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36],
|
[ 4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36],
|
||||||
[20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16],
|
[20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16],
|
||||||
[20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54],
|
[20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54],
|
||||||
[1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48]]
|
[ 1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48]
|
||||||
|
]))
|
||||||
|
|
||||||
def summ(x, y, flag):
|
|
||||||
vector = ((1, 0), (0, 1), (1, 1), (1, -1))
|
|
||||||
total = 1
|
|
||||||
for i in xrange(4):
|
|
||||||
total *= a[x][y]
|
|
||||||
x += vector[flag][0]
|
|
||||||
y += vector[flag][1]
|
|
||||||
return total
|
|
||||||
|
|
||||||
maxx = [0,]
|
|
||||||
|
|
||||||
for i in xrange(20 - 4):
|
|
||||||
for j in xrange(20 - 4):
|
|
||||||
for k in xrange(3):
|
|
||||||
tmp = summ(i, j, k)
|
|
||||||
if tmp > maxx[0]:
|
|
||||||
maxx = [tmp, i, j, k]
|
|
||||||
for j in xrange(3, 20):
|
|
||||||
tmp = summ(i, j, 3)
|
|
||||||
if tmp > maxx[0]:
|
|
||||||
maxx = [tmp, i, j, 3]
|
|
||||||
|
|
||||||
print maxx
|
|
||||||
|
71
python/12.py
71
python/12.py
@ -1,30 +1,45 @@
|
|||||||
''' The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
|
|
||||||
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
|
|
||||||
Let us list the factors of the first seven triangle numbers:
|
|
||||||
1: 1
|
|
||||||
3: 1,3
|
|
||||||
6: 1,2,3,6
|
|
||||||
10: 1,2,5,10
|
|
||||||
15: 1,3,5,15
|
|
||||||
21: 1,3,7,21
|
|
||||||
28: 1,2,4,7,14,28
|
|
||||||
We can see that 28 is the first triangle number to have over five divisors.
|
|
||||||
What is the value of the first triangle number to have over five hundred divisors? '''
|
|
||||||
|
|
||||||
def play(stop):
|
from functools import reduce
|
||||||
num = 3
|
from tools import number_theory
|
||||||
while 1:
|
|
||||||
num += 1
|
|
||||||
n = num * (num + 1) / 2
|
|
||||||
sqr = int(n ** 0.5)
|
|
||||||
count = 0
|
|
||||||
if sqr * sqr == n: count = 1
|
|
||||||
for tmp in xrange(2, sqr):
|
|
||||||
if n % tmp == 0:
|
|
||||||
count += 1
|
|
||||||
if count >= stop // 2:
|
|
||||||
print n
|
|
||||||
return 1
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
g_prime = list(number_theory.make_prime(1000000))
|
||||||
play(500)
|
|
||||||
|
def find_a_factor(num, prime):
|
||||||
|
while prime:
|
||||||
|
p = prime.pop(0)
|
||||||
|
if not (num % p):
|
||||||
|
return p, prime
|
||||||
|
return 0, []
|
||||||
|
|
||||||
|
def factor_num(num):
|
||||||
|
global g_prime
|
||||||
|
for i, value in enumerate(g_prime):
|
||||||
|
if value ** 2 > num:
|
||||||
|
break
|
||||||
|
prime = g_prime[:i]
|
||||||
|
|
||||||
|
factors = {}
|
||||||
|
while True:
|
||||||
|
factor, prime = find_a_factor(num, prime)
|
||||||
|
if factor:
|
||||||
|
count = 0
|
||||||
|
while not (num % factor):
|
||||||
|
num //= factor
|
||||||
|
count += 1
|
||||||
|
factors[factor] = count
|
||||||
|
else:
|
||||||
|
if 1 != num:
|
||||||
|
factors[num] = 1
|
||||||
|
return factors
|
||||||
|
|
||||||
|
def tri_num():
|
||||||
|
x = 2
|
||||||
|
while True:
|
||||||
|
yield x * (x + 1) // 2
|
||||||
|
x += 1
|
||||||
|
|
||||||
|
for x in tri_num():
|
||||||
|
factor_count = reduce(lambda x, y: x * (y + 1), factor_num(x).values(), 1)
|
||||||
|
if factor_count > 500:
|
||||||
|
print(x)
|
||||||
|
break
|
||||||
|
12
python/13.py
12
python/13.py
@ -1,4 +1,5 @@
|
|||||||
num = [
|
|
||||||
|
nums = [
|
||||||
37107287533902102798797998220837590246510135740250,
|
37107287533902102798797998220837590246510135740250,
|
||||||
46376937677490009712648124896970078050417018260538,
|
46376937677490009712648124896970078050417018260538,
|
||||||
74324986199524741059474233309513058123726617309629,
|
74324986199524741059474233309513058123726617309629,
|
||||||
@ -98,11 +99,6 @@ num = [
|
|||||||
77158542502016545090413245809786882778948721859617,
|
77158542502016545090413245809786882778948721859617,
|
||||||
72107838435069186155435662884062257473692284509516,
|
72107838435069186155435662884062257473692284509516,
|
||||||
20849603980134001723930671666823555245252804609722,
|
20849603980134001723930671666823555245252804609722,
|
||||||
53503534226472524250874054075591789781264330331690,]
|
53503534226472524250874054075591789781264330331690]
|
||||||
|
|
||||||
total = 0
|
print(str(sum(nums))[:10])
|
||||||
for i in num:
|
|
||||||
total += i
|
|
||||||
#print total
|
|
||||||
|
|
||||||
print str(total)[:10]
|
|
||||||
|
95
python/14.py
95
python/14.py
@ -1,49 +1,52 @@
|
|||||||
def sq(x):
|
|
||||||
out = 0
|
class Step:
|
||||||
while x != 1:
|
l = []
|
||||||
out += 1
|
d = {}
|
||||||
if x % 2 == 1:
|
limit = 0
|
||||||
x = x * 3 + 1
|
|
||||||
|
def __init__(self, num):
|
||||||
|
self.limit = 5 * num
|
||||||
|
self.l = [0] * self.limit
|
||||||
|
self.l[0] = 1
|
||||||
|
|
||||||
|
def __getitem__(self, key):
|
||||||
|
if self.limit > key:
|
||||||
|
return self.l[key]
|
||||||
|
else:
|
||||||
|
return self.d.setdefault(key, 0)
|
||||||
|
|
||||||
|
def __setitem__(self, key, value):
|
||||||
|
if self.limit > key:
|
||||||
|
self.l[key] = value
|
||||||
|
else:
|
||||||
|
self.d[key] = value
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def collatz_step(x, path):
|
||||||
|
global steps
|
||||||
|
if steps[x - 1]:
|
||||||
|
foot = steps[x - 1] + 1
|
||||||
|
while path:
|
||||||
|
steps[path.pop() - 1] = foot
|
||||||
|
foot += 1
|
||||||
|
return
|
||||||
else:
|
else:
|
||||||
x /= 2
|
path.append(x)
|
||||||
return out
|
if x % 2:
|
||||||
|
collatz_step(3 * x + 1, path)
|
||||||
|
else:
|
||||||
|
collatz_step(x // 2, path)
|
||||||
|
|
||||||
|
def collatz_max(num):
|
||||||
|
global steps
|
||||||
|
for x in range(1, num + 1):
|
||||||
|
if steps[x - 1]:
|
||||||
|
continue
|
||||||
|
collatz_step(x, [])
|
||||||
|
return steps.l.index(max(steps.l[:num])) + 1
|
||||||
|
|
||||||
|
|
||||||
maxx = [0, 0]
|
|
||||||
limit = 1000000
|
limit = 1000000
|
||||||
|
steps = Step(limit)
|
||||||
for i in xrange(1, limit + 1):
|
print(collatz_max(limit))
|
||||||
if i % 100000 == 0:
|
|
||||||
print i
|
|
||||||
tmp = sq(i)
|
|
||||||
if tmp > maxx[1]:
|
|
||||||
maxx[1] = tmp
|
|
||||||
maxx[0] = i
|
|
||||||
|
|
||||||
print maxx
|
|
||||||
|
|
||||||
'''
|
|
||||||
limit = 1000000
|
|
||||||
num = {1:1}
|
|
||||||
maxx = [0, 0]
|
|
||||||
tmp = []
|
|
||||||
for i in xrange(2, limit + 1):
|
|
||||||
x = i
|
|
||||||
while 1:
|
|
||||||
if num.has_key(x):
|
|
||||||
tmp.reverse()
|
|
||||||
bak = x
|
|
||||||
while len(tmp) > 0:
|
|
||||||
num.update({tmp[0]: num.get(bak) + 1})
|
|
||||||
bak = tmp[0]
|
|
||||||
tmp.pop(0)
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
tmp.append(x)
|
|
||||||
if x % 2 == 0:
|
|
||||||
x /= 2
|
|
||||||
else:
|
|
||||||
x = 3 * x + 1
|
|
||||||
if num.get(i) > maxx[1]:
|
|
||||||
maxx = [i, num.get(i)]
|
|
||||||
print maxx
|
|
||||||
'''
|
|
||||||
|
13
python/15.py
13
python/15.py
@ -1,9 +1,6 @@
|
|||||||
''' Starting in the top left corner of a 2*2 grid, there are 6 routes (without backtracking) to the bottom right corner.
|
|
||||||
How many routes are there through a 20*20 grid? '''
|
|
||||||
|
|
||||||
total = 1
|
from functools import reduce
|
||||||
for i in xrange(40, 20, -1):
|
|
||||||
total *= i
|
total = reduce(lambda x, y: x * y, range(40, 20, -1), 1)
|
||||||
for i in xrange(1, 21):
|
total = reduce(lambda x, y: x // y, range(1, 21), total)
|
||||||
total /= i
|
print(total)
|
||||||
print total
|
|
||||||
|
@ -1,7 +1,4 @@
|
|||||||
''' What is the sum of the digits of the number 2^1000 ? '''
|
|
||||||
|
|
||||||
stri = str(2 ** 1000)
|
from functools import reduce
|
||||||
total = 0
|
|
||||||
for i in xrange(len(stri)):
|
print(reduce(lambda x, y: x + int(y), str(2 ** 1000), 0))
|
||||||
total += ord(stri[i]) - ord('0')
|
|
||||||
print total
|
|
||||||
|
66
python/17.py
66
python/17.py
@ -1,66 +0,0 @@
|
|||||||
dic = {
|
|
||||||
0:'',
|
|
||||||
1:'one',
|
|
||||||
2:'two',
|
|
||||||
3:'three',
|
|
||||||
4:'four',
|
|
||||||
5:'five',
|
|
||||||
6:'six',
|
|
||||||
7:'seven',
|
|
||||||
8:'eight',
|
|
||||||
9:'nine',
|
|
||||||
10:'ten',
|
|
||||||
11:'eleven',
|
|
||||||
12:'twelve',
|
|
||||||
13:'thirteen',
|
|
||||||
14:'fourteen',
|
|
||||||
15:'fifteen',
|
|
||||||
16:'sixteen',
|
|
||||||
17:'seventeen',
|
|
||||||
18:'eighteen',
|
|
||||||
19:'nineteen',
|
|
||||||
20:'twenty',
|
|
||||||
30:'thirty',
|
|
||||||
40:'forty',
|
|
||||||
50:'fifty',
|
|
||||||
60:'sixty',
|
|
||||||
70:'seventy',
|
|
||||||
80:'eighty',
|
|
||||||
90:'nithty',
|
|
||||||
100:'hundred',
|
|
||||||
1000:'thousand'
|
|
||||||
}
|
|
||||||
|
|
||||||
def analyse(x, p = 0):
|
|
||||||
if p: print x,
|
|
||||||
if x == 1000:
|
|
||||||
if p: print dic.get(x)
|
|
||||||
return len(dic.get(x))
|
|
||||||
out = 0
|
|
||||||
tmp = x / 100
|
|
||||||
if tmp:
|
|
||||||
out += len(dic.get(tmp))
|
|
||||||
if p: print dic.get(tmp),
|
|
||||||
out += len(dic.get(100))
|
|
||||||
if p: print dic.get(100),
|
|
||||||
if x % 100 == 0:
|
|
||||||
if p: print
|
|
||||||
return out
|
|
||||||
out += 3
|
|
||||||
if p: print 'and',
|
|
||||||
tmp = x % 100
|
|
||||||
if tmp < 20:
|
|
||||||
out += len(dic.get(tmp))
|
|
||||||
if p: print dic.get(tmp)
|
|
||||||
return out
|
|
||||||
out += len(dic.get(tmp / 10 * 10))
|
|
||||||
if p: print dic.get(tmp / 10 * 10),
|
|
||||||
out += len(dic.get(tmp % 10))
|
|
||||||
if p: print dic.get(tmp % 10)
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
total = 0
|
|
||||||
for i in xrange(1, 1001):
|
|
||||||
total += analyse(i)
|
|
||||||
print total
|
|
58
python/18.py
58
python/18.py
@ -1,50 +1,24 @@
|
|||||||
a = [[75],
|
|
||||||
|
def trace(pick, triangle):
|
||||||
|
maxi = [0] * (len(triangle[-1]) + 1)
|
||||||
|
for line in reversed(triangle):
|
||||||
|
for i, value in enumerate(line):
|
||||||
|
maxi[i] = value + pick(maxi[i], maxi[i + 1])
|
||||||
|
return maxi[0]
|
||||||
|
|
||||||
|
print(trace(max,[
|
||||||
|
[75],
|
||||||
[95, 64],
|
[95, 64],
|
||||||
[17, 47, 82],
|
[17, 47, 82],
|
||||||
[18, 35, 87, 10],
|
[18, 35, 87, 10],
|
||||||
[20, 4, 82, 47, 65],
|
[20, 4, 82, 47, 65],
|
||||||
[19, 1, 23, 75, 3, 34],
|
[19, 1, 23, 75, 3, 34],
|
||||||
[88, 2, 77, 73, 7, 63, 67],
|
[88, 2, 77, 73, 7, 63, 67],
|
||||||
[99, 65, 4, 28, 6, 16, 70, 92],
|
[99, 65, 4, 28, 6, 16, 70, 92],
|
||||||
[41, 41, 26, 56, 83, 40, 80, 70, 33],
|
[41, 41, 26, 56, 83, 40, 80, 70, 33],
|
||||||
[41, 48, 72, 33, 47, 32, 37, 16, 94, 29],
|
[41, 48, 72, 33, 47, 32, 37, 16, 94, 29],
|
||||||
[53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14],
|
[53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14],
|
||||||
[70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57],
|
[70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57],
|
||||||
[91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48],
|
[91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48],
|
||||||
[63, 66, 4, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31],
|
[63, 66, 4, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31],
|
||||||
[4, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 4, 23]]
|
[ 4, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 4, 23]]))
|
||||||
|
|
||||||
|
|
||||||
path = a[-1][:]
|
|
||||||
for i in xrange(len(a) - 2, 0, -1):
|
|
||||||
newpath = []
|
|
||||||
for j in xrange(i + 1):
|
|
||||||
better = max(path[j], path[j + 1])
|
|
||||||
newpath.append(a[i][j] + better)
|
|
||||||
path = newpath
|
|
||||||
print max(path) + a[0][0]
|
|
||||||
|
|
||||||
|
|
||||||
'''
|
|
||||||
path = [[a[0][0], [a[0][0]]]]
|
|
||||||
for i in xrange(1, len(a)):
|
|
||||||
newpath = []
|
|
||||||
tmp = path[0][1][:]
|
|
||||||
tmp.append(a[i][0])
|
|
||||||
newpath.append([path[0][0] + a[i][0], tmp])
|
|
||||||
for j in xrange(1, i):
|
|
||||||
flag = (path[j - 1][0] > path[j][0]) and -1 or 0
|
|
||||||
tmp = path[j + flag][1][:]
|
|
||||||
tmp.append(a[i][j])
|
|
||||||
newpath.append([path[j + flag][0] + a[i][j], tmp])
|
|
||||||
tmp = path[i - 1][1][:]
|
|
||||||
tmp.append(a[i][i])
|
|
||||||
newpath.append([path[i - 1][0] + a[i][i], tmp])
|
|
||||||
path = newpath
|
|
||||||
|
|
||||||
maxx = [0, 0]
|
|
||||||
for i in path:
|
|
||||||
if i[0] > maxx[0]:
|
|
||||||
maxx = i
|
|
||||||
print maxx
|
|
||||||
'''
|
|
||||||
|
43
python/19.py
43
python/19.py
@ -1,33 +1,18 @@
|
|||||||
month = (0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)
|
|
||||||
|
|
||||||
|
weekday = [5]
|
||||||
|
month = (31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30)
|
||||||
|
|
||||||
def testyear(x):
|
def leap_day(year):
|
||||||
if x % 400 == 0:
|
if not (year % 400):
|
||||||
return True
|
return 1
|
||||||
if x % 100 != 0 and x % 4 == 0:
|
if (year % 100) and (not (year % 4)):
|
||||||
return True
|
return 1
|
||||||
return False
|
return 0
|
||||||
|
|
||||||
|
for y in range(1900, 2001):
|
||||||
|
for m in month:
|
||||||
|
weekday.append((weekday[-1] + m) % 7)
|
||||||
|
if 28 == m:
|
||||||
|
weekday[-1] = (weekday[-1] + leap_day(y)) % 7
|
||||||
|
|
||||||
pair = [[1900, 1], 1]
|
print(weekday[13:].count(0))
|
||||||
|
|
||||||
def next():
|
|
||||||
pair[1] += month[pair[0][1]]
|
|
||||||
if testyear(pair[0][0]) and pair[0][1] == 2:
|
|
||||||
pair[1] += 1
|
|
||||||
pair[1] %= 7
|
|
||||||
pair[0][1] += 1
|
|
||||||
if pair[0][1] > 12:
|
|
||||||
pair[0][1] = 1
|
|
||||||
pair[0][0] += 1
|
|
||||||
|
|
||||||
total = 0
|
|
||||||
for i in xrange(12):
|
|
||||||
next()
|
|
||||||
|
|
||||||
while pair[0][0] < 2001:
|
|
||||||
if pair[1] == 0:
|
|
||||||
total += 1
|
|
||||||
next()
|
|
||||||
|
|
||||||
print total
|
|
||||||
|
35
python/2.py
35
python/2.py
@ -1,24 +1,17 @@
|
|||||||
# coding=utf-8
|
|
||||||
|
|
||||||
''' Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
|
def fibonacci():
|
||||||
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
|
a, b = 1, 1
|
||||||
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms. '''
|
while True:
|
||||||
|
yield a
|
||||||
|
a, b = b, a + b
|
||||||
|
|
||||||
fib = [1, 1, 0] # 设置 fib 数列循环的数组
|
def target_sum(limit, match):
|
||||||
i = 1 # fib 数列的项计数器
|
total = 0
|
||||||
total = 0 # 满足条件的数的和
|
for x in fibonacci():
|
||||||
while fib[i] <= 4000000: # fib 数列小于要求值时不断循环
|
if x >= limit:
|
||||||
if fib[i] % 2 == 0:
|
break
|
||||||
print fib[i]
|
if match(x):
|
||||||
total += fib[i] # 满足条件的项计入总和
|
total += x
|
||||||
i = (i + 1) % 3 # 项计数器
|
return total
|
||||||
fib[i] = fib[(i + 1) % 3] + fib[(i + 2) % 3] #
|
|
||||||
print total #
|
|
||||||
|
|
||||||
a, b = 2, 8
|
|
||||||
total = 0
|
|
||||||
while a < 4000000:
|
|
||||||
total += a
|
|
||||||
a, b = b, a + b * 4
|
|
||||||
print total
|
|
||||||
|
|
||||||
|
print(target_sum(4000000, lambda x: not (x & 1)))
|
||||||
|
20
python/20.py
20
python/20.py
@ -1,13 +1,9 @@
|
|||||||
''' n! means n * (n - 1) * ... * 3 * 2 * 1
|
|
||||||
For example, 10! = 10 * 9 * ... * 3 * 2 * 1 = 3628800,
|
|
||||||
and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.
|
|
||||||
Find the sum of the digits in the number 100! '''
|
|
||||||
|
|
||||||
a = 1
|
from functools import reduce
|
||||||
sum = 0
|
|
||||||
for i in xrange(1, 101):
|
def factorial(n):
|
||||||
a *= i
|
if 1 == n:
|
||||||
while a > 0:
|
return 1
|
||||||
sum += a % 10
|
return n * factorial(n - 1)
|
||||||
a /= 10
|
|
||||||
print sum
|
print(reduce(lambda x, y: x + int(y), str(factorial(100)), 0))
|
||||||
|
36
python/21.py
36
python/21.py
@ -1,19 +1,23 @@
|
|||||||
''' Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
|
|
||||||
If d(a) = b and d(b) = a, where a b, then a and b are an amicable pair and each of a and b are called amicable numbers.
|
|
||||||
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
|
|
||||||
Evaluate the sum of all the amicable numbers under 10000. '''
|
|
||||||
|
|
||||||
import math
|
def all_factor(num):
|
||||||
|
factors = [1]
|
||||||
|
sqrt = int(num ** 0.5)
|
||||||
|
if sqrt ** 2 == num:
|
||||||
|
factors.append(sqrt)
|
||||||
|
sqrt -= 1
|
||||||
|
for x in range(2, sqrt + 1):
|
||||||
|
if not (num % x):
|
||||||
|
factors += [x, num // x]
|
||||||
|
return factors
|
||||||
|
|
||||||
def ami(x):
|
def count_amicable(begin, end):
|
||||||
test = 1
|
total = 0
|
||||||
sqr = int(math.ceil(math.sqrt(x)))
|
while begin < end:
|
||||||
if sqr * sqr == x: test += sqr
|
factor_sum = sum(all_factor(begin))
|
||||||
for i in xrange(2, sqr + 1):
|
if (sum(all_factor(factor_sum)) == begin) and (factor_sum != begin):
|
||||||
if x % i == 0: test += i + x / i
|
total += begin + factor_sum
|
||||||
return test
|
begin = factor_sum
|
||||||
|
begin += 1
|
||||||
|
return total
|
||||||
|
|
||||||
for j in xrange(2, 10000):
|
print(count_amicable(200, 10000))
|
||||||
tmp = ami(j)
|
|
||||||
if j == ami(tmp) and j != tmp:
|
|
||||||
print j, '\t', tmp
|
|
||||||
|
24
python/22.py
24
python/22.py
@ -1,21 +1,11 @@
|
|||||||
''' Using names.txt (right click and 'Save Link/Target As...'), a 46K text file containing over five-thousand first names, begin by sorting it into alphabetical order. Then working out the alphabetical value for each name, multiply this value by its alphabetical position in the list to obtain a name score.
|
|
||||||
For example, when the list is sorted into alphabetical order, COLIN, which is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list. So, COLIN would obtain a score of 938 * 53 = 49714.
|
|
||||||
What is the total of all the name scores in the file? '''
|
|
||||||
|
|
||||||
def namescore(nn):
|
from functools import reduce
|
||||||
mark = 0
|
|
||||||
for i in nn:
|
|
||||||
mark += ord(i) - ord('A') + 1
|
|
||||||
return mark
|
|
||||||
|
|
||||||
|
def get_file():
|
||||||
|
names = open('../resource/names.txt', 'r').read().split(',')
|
||||||
|
return sorted(names)
|
||||||
|
|
||||||
filein = open('names.txt', 'r')
|
def name_score(name):
|
||||||
names = filein.read().split(',')
|
return reduce(lambda x, y: x + ord(y) - ord('A') + 1, name, 0)
|
||||||
names.sort()
|
|
||||||
test = names[:]
|
|
||||||
|
|
||||||
|
print(reduce(lambda x, y: x + (y[0] + 1) * y[1], enumerate(map(lambda x: name_score(x), get_file())), 0))
|
||||||
for xx in xrange(len(names)):
|
|
||||||
test[xx] = (xx + 1) * namescore(names[xx])
|
|
||||||
|
|
||||||
print sum(test)
|
|
||||||
|
72
python/23.py
72
python/23.py
@ -1,49 +1,31 @@
|
|||||||
# coding=utf-8
|
|
||||||
''' A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.
|
|
||||||
A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n.
|
|
||||||
As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit.
|
|
||||||
Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers. '''
|
|
||||||
|
|
||||||
_limit = 20161
|
def all_factor(num):
|
||||||
|
factors = [1]
|
||||||
|
sqrt = int(num ** 0.5)
|
||||||
|
if sqrt ** 2 == num:
|
||||||
|
factors.append(sqrt)
|
||||||
|
sqrt -= 1
|
||||||
|
for x in range(2, sqrt + 1):
|
||||||
|
if not (num % x):
|
||||||
|
factors += [x, num // x]
|
||||||
|
return factors
|
||||||
|
|
||||||
def factor(n):
|
def get_abundant(limit):
|
||||||
ll = [1]
|
gets = [12]
|
||||||
i = 2
|
for x in range(13, limit):
|
||||||
while i <= int(n ** 0.5):
|
if sum(all_factor(x)) > x:
|
||||||
if n % i == 0:
|
gets.append(x)
|
||||||
ll.append(i)
|
return gets
|
||||||
if n // i != i:
|
|
||||||
ll.append(n / i)
|
|
||||||
i += 1
|
|
||||||
return ll
|
|
||||||
|
|
||||||
def test(x):
|
def get_none_dule_abundant(limit):
|
||||||
sum = 0
|
factor = get_abundant(limit)
|
||||||
for i in factor(x):
|
flags = [1] * (limit + 1)
|
||||||
sum += i
|
for x in range(len(factor)):
|
||||||
if sum > x:
|
for y in range(x, len(factor)):
|
||||||
return 1
|
s = factor[x] + factor[y]
|
||||||
else: return 0
|
if s > limit:
|
||||||
|
break
|
||||||
|
flags[s] = 0
|
||||||
|
return [x[0] for x in enumerate(flags) if x[1]]
|
||||||
|
|
||||||
def ablist(max):
|
print(sum(get_none_dule_abundant(28123)))
|
||||||
all = []
|
|
||||||
for i in xrange(10, max + 1):
|
|
||||||
if test(i):
|
|
||||||
all.append(i)
|
|
||||||
return all
|
|
||||||
|
|
||||||
abnum = ablist(_limit)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
num = range(_limit + 1)
|
|
||||||
for xx in abnum:
|
|
||||||
for yy in abnum:
|
|
||||||
tmp = xx + yy
|
|
||||||
if tmp < _limit:
|
|
||||||
num[tmp] = 0
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
sum = 0
|
|
||||||
for i in num:
|
|
||||||
sum += i
|
|
||||||
print sum
|
|
||||||
|
38
python/24.py
38
python/24.py
@ -1,25 +1,19 @@
|
|||||||
_max = 10
|
|
||||||
_end = 1000000
|
|
||||||
|
|
||||||
_last = 3628800
|
def make_permutation(n):
|
||||||
|
p = [1]
|
||||||
|
for i in range(2, n):
|
||||||
|
p = [p[0] * i] + p
|
||||||
|
return p
|
||||||
|
|
||||||
locale = _end - 1
|
def get_order(n, order):
|
||||||
|
permutation = make_permutation(n)
|
||||||
|
number = list(range(n))
|
||||||
|
sequence = []
|
||||||
|
order -= 1
|
||||||
|
for p in permutation:
|
||||||
|
q = order // p
|
||||||
|
sequence.append(number.pop(q))
|
||||||
|
order %= p
|
||||||
|
return sequence + number
|
||||||
|
|
||||||
num = [1, 1]
|
print(''.join(map(lambda x: str(x), get_order(10, 1000000))))
|
||||||
count = [1,1,1,1,1,1,1,1,1,1]
|
|
||||||
ch = '0123456789'
|
|
||||||
out = ''
|
|
||||||
|
|
||||||
i = 2
|
|
||||||
while len(num) < 10:
|
|
||||||
num.append(num[-1] * i)
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
for i in xrange(_max - 1, 0, -1):
|
|
||||||
count[i] = locale / num[i]
|
|
||||||
locale %= num[i]
|
|
||||||
out += ch[count[i]]
|
|
||||||
ch = ch[:count[i]] + ch[count[i] + 1:]
|
|
||||||
|
|
||||||
|
|
||||||
print out + ch
|
|
||||||
|
20
python/25.py
20
python/25.py
@ -1,7 +1,13 @@
|
|||||||
fib = [1, 1, 0]
|
|
||||||
num = 2
|
def fibonacci():
|
||||||
while 1:
|
a, b = 1, 1
|
||||||
fib[num % 2] = fib[(num + 1) % 2] + fib[(num + 2) % 2]
|
while True:
|
||||||
if len(str(fib[num % 2])) == 1000: break
|
yield a
|
||||||
num += 1
|
a, b = b, a + b
|
||||||
print num + 1
|
|
||||||
|
def fib_digit(digit):
|
||||||
|
for i, value in enumerate(fibonacci()):
|
||||||
|
if len(str(value)) == digit:
|
||||||
|
return i + 1
|
||||||
|
|
||||||
|
print(fib_digit(1000))
|
||||||
|
56
python/26.py
56
python/26.py
@ -1,39 +1,25 @@
|
|||||||
# coding=utf-8
|
|
||||||
def divnum(a):
|
|
||||||
mod = []
|
|
||||||
div = 1
|
|
||||||
while 1:
|
|
||||||
tmp = div % a
|
|
||||||
if tmp == 0:
|
|
||||||
return len(mod)
|
|
||||||
elif mod.count(tmp): break
|
|
||||||
else:
|
|
||||||
mod.append(tmp)
|
|
||||||
div *= 10
|
|
||||||
return len(mod) - mod.index(tmp)
|
|
||||||
|
|
||||||
|
def sum_mod(m):
|
||||||
|
mod = 9 % m
|
||||||
|
while True:
|
||||||
|
yield mod
|
||||||
|
mod = ((mod * 10) + 9) % m
|
||||||
|
|
||||||
def divnum1(a):
|
def exact_div(m):
|
||||||
while a % 2 == 0:
|
if not m:
|
||||||
a /= 2
|
return 0
|
||||||
while a % 5 == 0:
|
while not (m % 2):
|
||||||
a /= 5
|
m //= 2
|
||||||
j = 1
|
while not (m % 5):
|
||||||
while 1:
|
m //= 5
|
||||||
tmp = int('9' * j)
|
if 1 == m:
|
||||||
if tmp % a == 0:
|
return 0
|
||||||
return str(tmp / a)
|
for i, value in enumerate(sum_mod(m)):
|
||||||
j += 1
|
if not value:
|
||||||
|
return i + 1
|
||||||
|
|
||||||
|
def max_cycle(limit):
|
||||||
|
cycles = [exact_div(x) for x in range(limit + 1)]
|
||||||
|
return cycles.index(max(cycles))
|
||||||
|
|
||||||
|
print(max_cycle(1000))
|
||||||
maxnum = [0, 0]
|
|
||||||
maxx = 1000
|
|
||||||
for i in xrange(1, maxx + 1):
|
|
||||||
temp = divnum(i)
|
|
||||||
#temp = len(divnum1(i))
|
|
||||||
if temp > maxnum[1]:
|
|
||||||
maxnum[0] = i
|
|
||||||
maxnum[1] = temp
|
|
||||||
|
|
||||||
print maxnum
|
|
||||||
|
62
python/27.py
62
python/27.py
@ -1,33 +1,37 @@
|
|||||||
def isprime(x):
|
|
||||||
if x <= 0:
|
from tools import number_theory
|
||||||
|
|
||||||
|
def test_prime(x, prime):
|
||||||
|
for p in prime:
|
||||||
|
if p ** 2 > x:
|
||||||
|
return True
|
||||||
|
if not (x % p):
|
||||||
|
return False
|
||||||
return False
|
return False
|
||||||
if x == 2:
|
|
||||||
return True
|
|
||||||
temp = 3
|
|
||||||
while temp <= int(x ** 0.5) + 1:
|
|
||||||
if x % temp == 0: return False
|
|
||||||
else: temp += 2
|
|
||||||
return True
|
|
||||||
|
|
||||||
|
def gen_value(a, b):
|
||||||
|
n = 0
|
||||||
|
x = b
|
||||||
|
prime = list(number_theory.make_prime(10000))
|
||||||
|
while True:
|
||||||
|
if prime[-1] ** 2 < x:
|
||||||
|
prime = list(number_theory.make_prime(prime[-1] * 2 + 1))
|
||||||
|
if 0 > x:
|
||||||
|
return
|
||||||
|
if not test_prime(x, prime):
|
||||||
|
return
|
||||||
|
yield x
|
||||||
|
x += 2 * n + a + 1
|
||||||
|
n += 1
|
||||||
|
|
||||||
delta = lambda x, y: 2 * x + y + 1
|
def test_polynomial(limit):
|
||||||
|
maxi = [0, (0, 0)]
|
||||||
|
for b in number_theory.make_prime(limit):
|
||||||
|
for a in range(-b, 0, 2):
|
||||||
|
l = len(list(gen_value(a, b)))
|
||||||
|
if l > maxi[0]:
|
||||||
|
maxi = [l, (a, b)]
|
||||||
|
print(maxi)
|
||||||
|
return maxi[1][0] * maxi[1][1]
|
||||||
|
|
||||||
|
print(test_polynomial(1000))
|
||||||
a = [0, 0, 0]
|
|
||||||
for j in xrange(1001):
|
|
||||||
if isprime(j):
|
|
||||||
for i in xrange(-1000, 1001):
|
|
||||||
n = 0
|
|
||||||
tmp = j
|
|
||||||
while 1:
|
|
||||||
tmp += delta(n, i)
|
|
||||||
if isprime(tmp):
|
|
||||||
#print j, '\t', i, '\t', tmp
|
|
||||||
n += 1
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
if n > a[0]:
|
|
||||||
a[0] = n
|
|
||||||
a[1] = i
|
|
||||||
a[2] = j
|
|
||||||
print a[1] * a[2], '=', a[1], '*', a[2]
|
|
||||||
|
@ -1,8 +1 @@
|
|||||||
total = 0
|
print(sum([4 * (x ** 2 + x // 2 + 1) for x in range(0, 1001, 2)]) - 3)
|
||||||
|
|
||||||
for i in xrange(1, 1002):
|
|
||||||
tmp = i * i
|
|
||||||
total += tmp + (1 - i % 2)
|
|
||||||
total += tmp + i + 1
|
|
||||||
|
|
||||||
print total - 1001 * 1002 - 1
|
|
||||||
|
15
python/29.py
15
python/29.py
@ -1,8 +1,9 @@
|
|||||||
lis = []
|
|
||||||
for i in xrange(2, 101):
|
|
||||||
for j in xrange(2, 101):
|
|
||||||
tmp = i ** j
|
|
||||||
if lis.count(tmp) == 0:
|
|
||||||
lis.append(tmp)
|
|
||||||
|
|
||||||
print len(lis)
|
def mk_uniqe(limit):
|
||||||
|
s = set()
|
||||||
|
for i in range(2, limit + 1):
|
||||||
|
for j in range(2, limit + 1):
|
||||||
|
s.add(i ** j)
|
||||||
|
return s
|
||||||
|
|
||||||
|
print(len(mk_uniqe(100)))
|
||||||
|
41
python/3.py
41
python/3.py
@ -1,20 +1,25 @@
|
|||||||
# coding=utf-8
|
|
||||||
''' The prime factors of 13195 are 5, 7, 13 and 29.
|
|
||||||
What is the largest prime factor of the number 600851475143 ? '''
|
|
||||||
|
|
||||||
'''分解因数,如果是素数返回'''
|
from tools import number_theory
|
||||||
def factor(x, min = 2):
|
|
||||||
temp = min
|
|
||||||
while temp <= int(x ** 0.5) + 1: #从最小值到上界开始尝试
|
|
||||||
if x % temp == 0: return temp # 如果 a 能分解则返回最小因子
|
|
||||||
else: temp += 1
|
|
||||||
return 1 # 如果 a 是素数就返回 1,此处也可以设置为返回 x 本身
|
|
||||||
|
|
||||||
n = 600851475143
|
def find_a_factor(num, prime):
|
||||||
i = 2 # 尝试循环分解 n 的因子
|
while prime:
|
||||||
while i <= int(math.sqrt(n)) + 1:
|
p = prime.pop(0)
|
||||||
if n % i == 0 : # 如果满足 i 整除 n
|
if not (num % p):
|
||||||
if factor(n / i) == 1: break # 同时 n / i 是素数则返回
|
return p, prime
|
||||||
else: n /= i # 如果 n / i 不为素数,就缩小 n 以减小运算量
|
return 0, []
|
||||||
i += 1
|
|
||||||
print n / i # 输出结果
|
def factor_num(num):
|
||||||
|
prime = list(number_theory.make_prime(int(num ** 0.5)))
|
||||||
|
factors = []
|
||||||
|
while True:
|
||||||
|
factor, prime = find_a_factor(num, prime)
|
||||||
|
if factor:
|
||||||
|
factors.append(factor)
|
||||||
|
while not (num % factor):
|
||||||
|
num //= factor
|
||||||
|
else:
|
||||||
|
if 1 != num:
|
||||||
|
factors.append(num)
|
||||||
|
return factors
|
||||||
|
|
||||||
|
print(factor_num(600851475143))
|
||||||
|
30
python/30.py
30
python/30.py
@ -1,15 +1,21 @@
|
|||||||
def ala(x, n = 5):
|
|
||||||
ss = 0
|
|
||||||
while x != 0:
|
|
||||||
ss += (x % 10) ** n
|
|
||||||
x /= 10
|
|
||||||
return ss
|
|
||||||
|
|
||||||
total = 0
|
def get_limit(num):
|
||||||
for i in xrange(1000000):
|
n = 1
|
||||||
if i == ala(i):
|
while (10 ** n) < n * (9 ** num):
|
||||||
print i
|
n += 1
|
||||||
total += i
|
return n
|
||||||
|
|
||||||
|
def eq(x, num):
|
||||||
|
ori_number = x
|
||||||
|
sum_power = 0
|
||||||
|
while x:
|
||||||
|
sum_power += (x % 10) ** num
|
||||||
|
x //= 10
|
||||||
|
return sum_power == ori_number
|
||||||
|
|
||||||
print '\n\n', total - 1
|
def get(num):
|
||||||
|
for x in range(2, 10 ** get_limit(num)):
|
||||||
|
if eq(x, num):
|
||||||
|
yield x
|
||||||
|
|
||||||
|
print(sum(get(5)))
|
||||||
|
27
python/31.py
27
python/31.py
@ -1,17 +1,14 @@
|
|||||||
cash = (200, 100, 50, 20, 10, 5, 2, 1)
|
|
||||||
#cash = (5, 2, 1)
|
|
||||||
total = []
|
|
||||||
|
|
||||||
def im(lis, x, n, a = 0):
|
def count_money_iter(total, cash, count):
|
||||||
if a == len(cash) - 1:
|
if not len(cash):
|
||||||
x.append(n)
|
count[0] += 1
|
||||||
lis.append(x[:])
|
else:
|
||||||
x.pop()
|
for x in range(total // cash[0] + 1):
|
||||||
return
|
count_money_iter(total - x * cash[0], cash[1:], count)
|
||||||
for i in xrange(int(n / cash[a]) + 1):
|
|
||||||
x.append(i)
|
|
||||||
im(lis, x, n - i * cash[a], a + 1)
|
|
||||||
x.pop()
|
|
||||||
|
|
||||||
im(total, [], 200)
|
def count_money(total, cash):
|
||||||
print len(total)
|
count = [0]
|
||||||
|
count_money_iter(total, cash, count)
|
||||||
|
return count[0]
|
||||||
|
|
||||||
|
print(count_money(200, [200, 100, 50, 20, 10, 5, 2]))
|
||||||
|
66
python/32.py
66
python/32.py
@ -1,53 +1,23 @@
|
|||||||
from math import log10
|
|
||||||
|
|
||||||
def pick(x, lis, out, a = 0):
|
def make_permutation_iter(num, l, s, result):
|
||||||
if x == 0:
|
if not num:
|
||||||
out.append([a, lis])
|
result.append((s, l))
|
||||||
return
|
|
||||||
a *= 10
|
|
||||||
for i in xrange(len(lis)):
|
|
||||||
tmp = lis[:]
|
|
||||||
tmpa = a + lis[i]
|
|
||||||
tmp.pop(i)
|
|
||||||
pick(x - 1, tmp, out, tmpa)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def test(x, n):
|
|
||||||
tmp = x[:]
|
|
||||||
while n > 0:
|
|
||||||
if tmp.count(n % 10):
|
|
||||||
tmp.remove(n % 10)
|
|
||||||
n /= 10
|
|
||||||
else:
|
else:
|
||||||
return False
|
for i in range(len(l)):
|
||||||
if len(tmp) > 0:
|
make_permutation_iter(num - 1, l[:i] + l[i + 1:], s + l[i], result)
|
||||||
return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
total = []
|
def make_permutation(num, l):
|
||||||
|
result = []
|
||||||
|
make_permutation_iter(num, l, '', result)
|
||||||
|
return result
|
||||||
|
|
||||||
tt = []
|
def add_type(a, b):
|
||||||
pick(1, [1,2,3,4,5,6,7,8,9], tt)
|
s = set()
|
||||||
for i in tt:
|
for x, left in make_permutation(a, '123456789'):
|
||||||
yy = []
|
for y, cmpr in make_permutation(b, left):
|
||||||
pick(4, i[1], yy)
|
multi = int(x) * int(y)
|
||||||
for j in yy:
|
if str(sorted(cmpr)) == str(sorted(str(multi))):
|
||||||
if test(j[1], i[0] * j[0]):
|
s.add(multi)
|
||||||
tmp = i[0] * j[0]
|
return sum(s)
|
||||||
if total.count(tmp) == 0:
|
|
||||||
total.append(tmp)
|
|
||||||
|
|
||||||
tt = []
|
print(add_type(1, 4) + add_type(2, 3))
|
||||||
pick(2, [1,2,3,4,5,6,7,8,9], tt)
|
|
||||||
for i in tt:
|
|
||||||
yy = []
|
|
||||||
pick(3, i[1], yy)
|
|
||||||
for j in yy:
|
|
||||||
if test(j[1], i[0] * j[0]):
|
|
||||||
tmp = i[0] * j[0]
|
|
||||||
if total.count(tmp) == 0:
|
|
||||||
total.append(tmp)
|
|
||||||
|
|
||||||
|
|
||||||
print sum(total)
|
|
||||||
|
48
python/33.py
48
python/33.py
@ -1,39 +1,15 @@
|
|||||||
gcd = lambda x, y: y == 0 and x or gcd(y, x % y)
|
|
||||||
|
|
||||||
|
from tools import number_theory
|
||||||
|
|
||||||
def common(x, y):
|
def multi():
|
||||||
a = []
|
numerator, denominator = 1, 1
|
||||||
b = []
|
for a in range(1, 10):
|
||||||
while x > 0:
|
for b in range(1, 10):
|
||||||
a.append(x % 10)
|
if a != b:
|
||||||
x /= 10
|
if not ((10 * a * b) % (9 * a + b)):
|
||||||
while y > 0:
|
c = 10 * a * b // (9 * a + b)
|
||||||
b.append(y % 10)
|
numerator *= 10 * a + b
|
||||||
y /= 10
|
denominator *= 10 * b + c
|
||||||
outa = 0
|
return denominator // number_theory.gcd(numerator, denominator)
|
||||||
outb = 0
|
|
||||||
tmp = list(set(a) & set(b))
|
|
||||||
if tmp.count(0) != 0:
|
|
||||||
tmp.remove(0)
|
|
||||||
if len(tmp) > 0:
|
|
||||||
for i in tmp:
|
|
||||||
a.remove(i)
|
|
||||||
b.remove(i)
|
|
||||||
if len(a) == 0 or len(b) == 0:
|
|
||||||
return (False, 0)
|
|
||||||
a.reverse()
|
|
||||||
for j in a: outa = outa * 10 + j
|
|
||||||
b.reverse()
|
|
||||||
for j in b: outb = outb * 10 + j
|
|
||||||
return (True, outa, outb)
|
|
||||||
else:
|
|
||||||
return (False, 0)
|
|
||||||
|
|
||||||
|
|
||||||
for i in xrange(11, 100):
|
|
||||||
for j in xrange(i + 1, 100):
|
|
||||||
tmp = common(i, j)
|
|
||||||
if tmp[0]:
|
|
||||||
if tmp[1] * j == tmp[2] * i:
|
|
||||||
print i, j
|
|
||||||
|
|
||||||
|
print(multi())
|
||||||
|
42
python/34.py
42
python/34.py
@ -1,25 +1,21 @@
|
|||||||
def mul(x):
|
|
||||||
out = 1
|
|
||||||
for i in xrange(2, x + 1):
|
|
||||||
out *= i
|
|
||||||
return out
|
|
||||||
|
|
||||||
def ala(x):
|
from functools import reduce
|
||||||
tt = x
|
|
||||||
xx = 0
|
|
||||||
while tt > 0:
|
|
||||||
xx += mul(tt % 10)
|
|
||||||
tt /= 10
|
|
||||||
if xx == x:
|
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
|
|
||||||
total = 0
|
def gen_fac(n):
|
||||||
i = 3
|
base = 1
|
||||||
while i < 100000:
|
for n in range(1, n + 2):
|
||||||
if ala(i):
|
yield base
|
||||||
print i
|
base *= n
|
||||||
total += i
|
|
||||||
i += 1
|
def find_sum():
|
||||||
print total
|
s = set()
|
||||||
|
fac = list(gen_fac(9))
|
||||||
|
for value in fac:
|
||||||
|
if 3 > value:
|
||||||
|
continue
|
||||||
|
for x in range(value, value + 1000):
|
||||||
|
if reduce(lambda x, y: x + fac[y], list(map(lambda x: int(x), str(x))), 0) == x:
|
||||||
|
s.add(x)
|
||||||
|
return s
|
||||||
|
|
||||||
|
print(sum(find_sum()))
|
||||||
|
55
python/35.py
55
python/35.py
@ -1,42 +1,21 @@
|
|||||||
''' The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.
|
|
||||||
There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
|
|
||||||
How many circular primes are there below one million? '''
|
|
||||||
|
|
||||||
from math import log10
|
from tools import number_theory
|
||||||
|
|
||||||
pp = [2]
|
def roll(num):
|
||||||
for i in xrange(3, 1000, 2):
|
s = str(num)
|
||||||
for x in pp:
|
for i in range(len(s)):
|
||||||
if i % x == 0:
|
yield int(s[i:] + s[:i])
|
||||||
break
|
|
||||||
else:
|
|
||||||
pp.append(i)
|
|
||||||
|
|
||||||
def isp(a):
|
def find_roll_prime(limit):
|
||||||
for i in pp:
|
count = 13
|
||||||
if a % i == 0:
|
prime = list(number_theory.make_prime(limit))[25:]
|
||||||
if a == i:
|
prime = list(filter(lambda x: ('5' not in str(x)), prime))
|
||||||
return True
|
for p in prime:
|
||||||
return False
|
for x in roll(p):
|
||||||
return True
|
if x not in prime:
|
||||||
|
break
|
||||||
def loop(x):
|
else:
|
||||||
length = int(log10(x))
|
count += 1
|
||||||
return (x % 10) * 10 ** length + x / 10
|
return count
|
||||||
|
|
||||||
def lote(n):
|
|
||||||
tt = n
|
|
||||||
while 1:
|
|
||||||
if not isp(tt):
|
|
||||||
return False
|
|
||||||
tt = loop(tt)
|
|
||||||
if tt == n:
|
|
||||||
return True
|
|
||||||
|
|
||||||
out = [2]
|
|
||||||
for ii in xrange(3, 1000000, 2):
|
|
||||||
if lote(ii):
|
|
||||||
out.append(ii)
|
|
||||||
|
|
||||||
print len(out)
|
|
||||||
|
|
||||||
|
print(find_roll_prime(1000000))
|
||||||
|
62
python/36.py
62
python/36.py
@ -1,45 +1,23 @@
|
|||||||
def rev(x):
|
|
||||||
out = ''
|
|
||||||
for i in xrange(len(x)):
|
|
||||||
out += x[-1 - i]
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
def gen_bit(bit_len):
|
||||||
|
for i in range(2 ** ((bit_len + 1) // 2)):
|
||||||
|
unit = bin(i)[2:]
|
||||||
|
half = '0' * ((bit_len + 1) // 2 - len(unit)) + unit
|
||||||
|
if bit_len % 2:
|
||||||
|
yield half + half[-2::-1]
|
||||||
|
else:
|
||||||
|
yield half + half[::-1]
|
||||||
|
|
||||||
|
def count_palindromic(limit):
|
||||||
|
bit_len = 1
|
||||||
|
result = []
|
||||||
|
while True:
|
||||||
|
for s in gen_bit(bit_len):
|
||||||
|
num = eval('0b1' + s + '1')
|
||||||
|
if num > limit:
|
||||||
|
return [1, 3] + result
|
||||||
|
if str(num) == str(num)[::-1]:
|
||||||
|
result.append(num)
|
||||||
|
bit_len += 1
|
||||||
|
|
||||||
def make(x):
|
print(sum(count_palindromic(1000000)))
|
||||||
if x == 1:
|
|
||||||
return [1,2,3,4,5,6,7,8,9]
|
|
||||||
lenn = 10 ** (x / 2)
|
|
||||||
out = []
|
|
||||||
for i in xrange(lenn / 10, lenn):
|
|
||||||
a = str(i)
|
|
||||||
b = rev(a)
|
|
||||||
if x % 2:
|
|
||||||
for i in xrange(10):
|
|
||||||
out.append(int(a + str(i) + b))
|
|
||||||
else:
|
|
||||||
out.append(int(a + b))
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def test(x):
|
|
||||||
bi = []
|
|
||||||
while x > 0:
|
|
||||||
bi.append(x % 2)
|
|
||||||
x /= 2
|
|
||||||
bb = bi[:]
|
|
||||||
bb.reverse()
|
|
||||||
if bi == bb:
|
|
||||||
#print bi,
|
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
|
|
||||||
total = 0
|
|
||||||
for i in xrange(1, 7):
|
|
||||||
for j in make(i):
|
|
||||||
if test(j):
|
|
||||||
#print j
|
|
||||||
total += j
|
|
||||||
print total
|
|
||||||
|
66
python/37.py
66
python/37.py
@ -1,35 +1,45 @@
|
|||||||
from math import sqrt, log10
|
|
||||||
|
|
||||||
def isp(x):
|
from tools import number_theory
|
||||||
if x == 2:
|
|
||||||
return True
|
|
||||||
if x <= 1 or x & 1 == 0:
|
|
||||||
return False
|
|
||||||
for i in xrange(3, int(sqrt(x)) + 1, 2):
|
|
||||||
if x % i == 0:
|
|
||||||
return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
|
def shift(num):
|
||||||
|
left = str(num)[:-1]
|
||||||
|
while left:
|
||||||
|
yield int(left)
|
||||||
|
left = left[:-1]
|
||||||
|
right = str(num)[1:]
|
||||||
|
while right:
|
||||||
|
yield int(right)
|
||||||
|
right = right[1:]
|
||||||
|
|
||||||
def ananum(x):
|
def check_prime(x):
|
||||||
if isp(x):
|
x = str(x)
|
||||||
for i in xrange(1, int(log10(x)) + 1):
|
if ('9' == x[0]) or ('9' == x[-1]):
|
||||||
if isp(x / (10 ** i)) and isp(x % (10 ** i)):
|
return False
|
||||||
continue
|
if ('1' == x[0]) or ('1' == x[-1]):
|
||||||
else:
|
return False
|
||||||
|
if '5' in x[1:]:
|
||||||
|
return False
|
||||||
|
if '2' in x[1:]:
|
||||||
|
return False
|
||||||
|
if '0' in x:
|
||||||
|
return False
|
||||||
|
if '4' in x:
|
||||||
|
return False
|
||||||
|
if '6' in x:
|
||||||
|
return False
|
||||||
|
if '8' in x:
|
||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
return False
|
|
||||||
|
|
||||||
|
def search():
|
||||||
|
find = []
|
||||||
|
prime = list(number_theory.make_prime(1000000))
|
||||||
|
for p in filter(lambda x: check_prime(x), prime):
|
||||||
|
for s in shift(p):
|
||||||
|
if s not in prime:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
find.append(p)
|
||||||
|
return find[4:]
|
||||||
|
|
||||||
count = 0
|
print(sum(search()))
|
||||||
total = []
|
|
||||||
n = 11
|
|
||||||
while count < 11:
|
|
||||||
if ananum(n):
|
|
||||||
count += 1
|
|
||||||
total.append(n)
|
|
||||||
n += 1
|
|
||||||
|
|
||||||
print count, sum(total)
|
|
||||||
print total
|
|
||||||
|
43
python/38.py
43
python/38.py
@ -1,31 +1,18 @@
|
|||||||
def pick(x, lis, out, a = 0):
|
|
||||||
if x == 0:
|
|
||||||
out.append(a)
|
|
||||||
return
|
|
||||||
a *= 10
|
|
||||||
for i in xrange(len(lis)):
|
|
||||||
tmp = lis[:]
|
|
||||||
tmpa = a + lis[i]
|
|
||||||
tmp.pop(i)
|
|
||||||
pick(x - 1, tmp, out, tmpa)
|
|
||||||
|
|
||||||
def test(x):
|
def seek(prefix, l):
|
||||||
mm = '932718654'
|
for a in l[::-1]:
|
||||||
ss = ''
|
for b in l[::-1]:
|
||||||
i = 0
|
if a != b:
|
||||||
while len(ss) < 9:
|
yield int(prefix + a + b)
|
||||||
i += 1
|
|
||||||
ss += str(i * x)
|
|
||||||
tt = []
|
|
||||||
for j in xrange(len(ss)):
|
|
||||||
tt.append(ss[j])
|
|
||||||
if len(tt) == len(set(tt)) and ss >= mm:
|
|
||||||
if not tt.count('0'):
|
|
||||||
print ss
|
|
||||||
|
|
||||||
num = [1,2,3,4,5,6,7,8,9]
|
def test():
|
||||||
tt = []
|
for x in seek('93', '24567'):
|
||||||
pick(4, num, tt)
|
num = str(x) + str(x * 2)
|
||||||
|
if '123456789' == ''.join(sorted(list(num))):
|
||||||
|
return num
|
||||||
|
for x in seek('92', '34567'):
|
||||||
|
num = str(x) + str(x * 2)
|
||||||
|
if '123456789' == ''.join(sorted(list(num))):
|
||||||
|
return num
|
||||||
|
|
||||||
for i in tt:
|
print(test())
|
||||||
test(i)
|
|
||||||
|
29
python/39.py
29
python/39.py
@ -1,21 +1,12 @@
|
|||||||
a = {}
|
|
||||||
|
|
||||||
for i in xrange(1, 1000):
|
def count(side):
|
||||||
for j in xrange(i, 1000):
|
sides = {}
|
||||||
tmp = i * i + j * j
|
for a in range(1, side // 3 + 1):
|
||||||
sqr = int(tmp ** 0.5)
|
for b in range(a + 1, (side - a) // 2):
|
||||||
if tmp == sqr * sqr and i + j + sqr <= 1000:
|
c = int((a ** 2 + b ** 2) ** 0.5)
|
||||||
tt = i + j + sqr
|
if (a ** 2 + b ** 2) == c ** 2:
|
||||||
if a.keys().count(tt):
|
s = a + b + c
|
||||||
a.update({tt: a.get(tt) + 1})
|
sides[s] = sides.setdefault(s, 0) + 1
|
||||||
else:
|
return max(sides, key=lambda x: sides[x])
|
||||||
a.update({tt: 1})
|
|
||||||
|
|
||||||
|
print(count(1000))
|
||||||
mm = [0, 0]
|
|
||||||
for i in a.keys():
|
|
||||||
if a.get(i) > mm[1]:
|
|
||||||
mm[0] = i
|
|
||||||
mm[1] = a.get(i)
|
|
||||||
|
|
||||||
print mm
|
|
||||||
|
21
python/4.py
21
python/4.py
@ -1,4 +1,19 @@
|
|||||||
# coding=utf-8
|
|
||||||
''' A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 * 99.
|
|
||||||
Find the largest palindrome made from the product of two 3-digit numbers.. '''
|
|
||||||
|
|
||||||
|
def find_factor(num):
|
||||||
|
for x in range(999, 99, -1):
|
||||||
|
if not (num % x):
|
||||||
|
return x
|
||||||
|
else:
|
||||||
|
return 0
|
||||||
|
|
||||||
|
def make_palindrome():
|
||||||
|
for x in range(999, 99, -1):
|
||||||
|
s = str(x)
|
||||||
|
yield int(s + s[::-1])
|
||||||
|
|
||||||
|
for x in make_palindrome():
|
||||||
|
p = find_factor(x)
|
||||||
|
if p:
|
||||||
|
if 3 == len(str(x // p)):
|
||||||
|
print(x)
|
||||||
|
exit()
|
||||||
|
48
python/40.py
48
python/40.py
@ -1,32 +1,22 @@
|
|||||||
''' An irrational decimal fraction is created by concatenating the positive
|
|
||||||
integers:
|
|
||||||
0.123456789101112131415161718192021...
|
|
||||||
It can be seen that the 12th digit of the fractional part is 1.
|
|
||||||
If dn represents the nth digit of the fractional part, find the value of the following expression.
|
|
||||||
d1 * d10 * d100 * d1000 * d10000 * d100000 * d1000000 '''
|
|
||||||
|
|
||||||
from math import log10
|
def get_digit(n):
|
||||||
|
n -= 1
|
||||||
|
i = 0
|
||||||
|
while True:
|
||||||
|
count_digit = (i + 1) * 9 * (10 ** i)
|
||||||
|
if n < count_digit:
|
||||||
|
break
|
||||||
|
n -= count_digit
|
||||||
|
i += 1
|
||||||
|
num, index = divmod(n, i + 1)
|
||||||
|
return int(str(num + 10 ** i)[index])
|
||||||
|
|
||||||
def num(x, i):
|
def multi_digit(limit):
|
||||||
if i > int(log10(x)):
|
multi = 1
|
||||||
raise IOError
|
n = 1
|
||||||
else:
|
while n < limit + 1:
|
||||||
i = int(log10(x)) - i
|
multi *= get_digit(n)
|
||||||
while i > 0:
|
n *= 10
|
||||||
x /= 10
|
return multi
|
||||||
i -= 1
|
|
||||||
return x % 10
|
|
||||||
|
|
||||||
def d(x):
|
print(multi_digit(1000000))
|
||||||
elem = [0, 9, 189, 2889, 38889, 488889, 5888889, 68888889]
|
|
||||||
for i in xrange(len(elem)):
|
|
||||||
if elem[i] >= x:
|
|
||||||
break
|
|
||||||
x -= elem[i - 1] + 1
|
|
||||||
return num(10 ** (i - 1) + x / i, x % i)
|
|
||||||
|
|
||||||
multi = 1
|
|
||||||
for i in xrange(7):
|
|
||||||
multi *= d(10 ** i)
|
|
||||||
#print d(10 ** i)
|
|
||||||
print multi
|
|
||||||
|
56
python/41.py
56
python/41.py
@ -1,33 +1,33 @@
|
|||||||
def pick(x, lis, out, a = 0):
|
|
||||||
if x == 0:
|
|
||||||
out.append(a)
|
|
||||||
return
|
|
||||||
a *= 10
|
|
||||||
for i in xrange(len(lis)):
|
|
||||||
tmp = lis[:]
|
|
||||||
tmpa = a + lis[i]
|
|
||||||
tmp.pop(i)
|
|
||||||
pick(x - 1, tmp, out, tmpa)
|
|
||||||
|
|
||||||
|
from tools import number_theory
|
||||||
|
|
||||||
def isprime(x):
|
def is_prime(num, prime):
|
||||||
if x == 2:
|
for p in prime:
|
||||||
return True
|
if p ** 2 > num:
|
||||||
if x % 2 == 0:
|
return True
|
||||||
return False
|
if not (num % p):
|
||||||
temp = 3
|
return False
|
||||||
while temp <= int(x ** 0.5) + 1:
|
|
||||||
if x % temp == 0: return False
|
|
||||||
else: temp += 2
|
|
||||||
return True
|
|
||||||
|
|
||||||
|
def gen_p(digit):
|
||||||
|
l = list(reversed(range(1, digit + 1)))
|
||||||
|
not_ordered = True
|
||||||
|
while not_ordered:
|
||||||
|
yield int(''.join(map(lambda x: str(x), l)))
|
||||||
|
for i in range(len(l) - 1, 0, -1):
|
||||||
|
if l[i - 1] > l[i]:
|
||||||
|
post = list(sorted(l[i - 1:]))
|
||||||
|
get = post.pop(post.index(l[i - 1]) - 1)
|
||||||
|
l = l[:i - 1] + [get] + list(reversed(post))
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
not_ordered = False
|
||||||
|
|
||||||
a = [1,2,3,4,5,6,7]
|
def find():
|
||||||
tt = []
|
prime = list(number_theory.make_prime(10000))
|
||||||
pick(len(a), a, tt)
|
for digit in range(8, 3, -1):
|
||||||
tt.reverse()
|
if digit % 3:
|
||||||
for i in tt:
|
for x in gen_p(digit):
|
||||||
if isprime(i):
|
if is_prime(x, prime):
|
||||||
print i
|
return x
|
||||||
break
|
|
||||||
|
|
||||||
|
print(find())
|
||||||
|
37
python/42.py
37
python/42.py
@ -1,29 +1,18 @@
|
|||||||
def trinum(x):
|
|
||||||
if x == 1:
|
|
||||||
return True
|
|
||||||
x *= 2
|
|
||||||
sqr = int(x ** 0.5)
|
|
||||||
if x == sqr * (sqr + 1):
|
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
|
|
||||||
filein = open('words.txt', 'r')
|
from functools import reduce
|
||||||
names = filein.read().split(',')
|
|
||||||
for ii in xrange(len(names)):
|
|
||||||
names[ii] = names[ii][1:-1]
|
|
||||||
|
|
||||||
def score(nn):
|
def word_num(word):
|
||||||
mark = 0
|
return reduce(lambda x, y: x + ord(y) - ord('A') + 1, word, 0)
|
||||||
for i in nn:
|
|
||||||
mark += ord(i) - ord('A') + 1
|
|
||||||
return mark
|
|
||||||
|
|
||||||
|
def is_tri_num(num):
|
||||||
|
sqrt = int((2 * num) ** 0.5)
|
||||||
|
return not ((sqrt + 1) * sqrt // 2 - num)
|
||||||
|
|
||||||
count = 0
|
def file_get():
|
||||||
for i in names:
|
with open('../resource/words.txt', 'r') as f:
|
||||||
if trinum(score(i)):
|
context = f.read().replace('"', '').split(',')
|
||||||
#print '%3d\t' % score(i), i
|
return list(filter(lambda x: is_tri_num(x), map(lambda x: word_num(x), context)))
|
||||||
count += 1
|
|
||||||
|
|
||||||
print count
|
open('../resource/words')
|
||||||
|
|
||||||
|
print(len(file_get()))
|
||||||
|
60
python/43.py
60
python/43.py
@ -1,31 +1,45 @@
|
|||||||
|
|
||||||
def picksort(x, lis, out, a = 0):
|
import time
|
||||||
if x == 0:
|
time.clock()
|
||||||
out.append(a)
|
|
||||||
return
|
|
||||||
a *= 10
|
|
||||||
for i in xrange(len(lis)):
|
|
||||||
tmp = lis[:]
|
|
||||||
tmpa = a + lis[i]
|
|
||||||
tmp.pop(i)
|
|
||||||
picksort(x - 1, tmp, out, tmpa)
|
|
||||||
|
|
||||||
|
def check_3(result, num, num_set):
|
||||||
|
for p in num_set:
|
||||||
|
if 0 == int(p + num[:2]) % 3:
|
||||||
|
last_num = ''.join(list(num_set - set(p)))
|
||||||
|
result.append(int(last_num + p + num))
|
||||||
|
result.append(int(last_num[::-1] + p + num))
|
||||||
|
|
||||||
|
def check_5(result, num, num_set):
|
||||||
|
for p in num_set:
|
||||||
|
if 0 == int(p) % 2:
|
||||||
|
check_3(result, p + num, num_set - set(p))
|
||||||
|
|
||||||
|
def check_7(result, num, num_set):
|
||||||
|
for p in num_set:
|
||||||
|
if 0 == int(p + num[:2]) % 7:
|
||||||
|
check_5(result, p + num, num_set - set(p))
|
||||||
|
|
||||||
a = [0,1,2,3,4,6,7,8,9]
|
def check_11(result, num, num_set):
|
||||||
tt = []
|
for p in '05':
|
||||||
picksort(len(a), a, tt)
|
if 0 == int(p + num[:2]) % 11:
|
||||||
|
check_7(result, p + num, num_set - set(p))
|
||||||
|
|
||||||
|
def check_13(result, num, num_set):
|
||||||
|
for p in num_set:
|
||||||
|
if '0' == p or '5' == p:
|
||||||
|
continue
|
||||||
|
if 0 == int(p + num[:2]) % 13:
|
||||||
|
check_11(result, p + num, num_set - set(p))
|
||||||
|
|
||||||
total = 0
|
def check_17():
|
||||||
for i in tt:
|
result = []
|
||||||
tttt = str(i)
|
for n in range(136, 1000, 17):
|
||||||
if tttt[0] != '0' and int(tttt[3]) % 2 == 0:
|
num = str(n)
|
||||||
if int(tttt[2:5]) % 3 == 0 and int(tttt[5:8]) % 13 == 0 and int(tttt[6:]) % 17 == 0:
|
if '0' in num or '5' in num:
|
||||||
tmp = i % 10000 + (i / 10000 * 10 + 5) * 10000
|
continue
|
||||||
if int(str(tmp)[4:7]) % 7 == 0 and int(str(tmp)[5:8]) % 11 == 0:
|
if len(num) == len(set(num)):
|
||||||
print tmp
|
check_13(result, num, set('1234567890') - set(num))
|
||||||
total += tmp
|
return result
|
||||||
|
|
||||||
print total
|
print(sum(check_17()))
|
||||||
|
print(time.clock())
|
||||||
|
13
python/44.py
13
python/44.py
@ -7,15 +7,14 @@ def test(x):
|
|||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def main():
|
def main(limit):
|
||||||
max = 3000
|
for d in xrange(1, limit):
|
||||||
for n in xrange(4, max):
|
for n in xrange(5, limit):
|
||||||
for m in xrange(n + 1, max):
|
m = n + d
|
||||||
a = 3 * (m * m + n * n) - m - n
|
a = 3 * (m * m + n * n) - m - n
|
||||||
b = (m - n) * (3 * (m + n) - 1)
|
b = d * (3 * (m + n) - 1)
|
||||||
if test(a) and test(b):
|
if test(a) and test(b):
|
||||||
print a / 2, b / 2, m, n
|
print a / 2, b / 2, m, n
|
||||||
return
|
return
|
||||||
|
|
||||||
|
main(1300)
|
||||||
main()
|
|
||||||
|
@ -5,4 +5,4 @@ while 1:
|
|||||||
if five == n * (n + 1) and n % 2 == 1:
|
if five == n * (n + 1) and n % 2 == 1:
|
||||||
break
|
break
|
||||||
m += 1
|
m += 1
|
||||||
print m * (3 * m - 1) / 2
|
print m, (n + 1) / 2, m * (3 * m - 1) / 2
|
||||||
|
44
python/46.py
44
python/46.py
@ -1,31 +1,21 @@
|
|||||||
from math import sqrt, log10
|
|
||||||
|
|
||||||
def isp(x):
|
from tools import number_theory
|
||||||
if x == 2:
|
import time
|
||||||
return True
|
time.clock()
|
||||||
if x <= 1 or x & 1 == 0:
|
|
||||||
|
def match(x, prime):
|
||||||
|
for base in range(1, int(((x - 3) // 2) ** 0.5) + 1):
|
||||||
|
if x - 2 * base * base in prime:
|
||||||
|
return True
|
||||||
return False
|
return False
|
||||||
for i in xrange(3, int(sqrt(x)) + 1, 2):
|
|
||||||
if x % i == 0:
|
|
||||||
return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
|
def search(limit):
|
||||||
|
prime = list(number_theory.make_prime(limit))
|
||||||
|
for x in range(21, limit, 2):
|
||||||
|
if x in prime:
|
||||||
|
continue
|
||||||
|
if not match(x, prime):
|
||||||
|
return x
|
||||||
|
|
||||||
def test(x):
|
print(search(10000))
|
||||||
sqr = int(sqrt((x - 1) / 2))
|
print(time.clock())
|
||||||
for i in xrange(1, sqr + 1):
|
|
||||||
tt = x - 2 * i * i
|
|
||||||
if isp(tt):
|
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
|
|
||||||
n = 9
|
|
||||||
while 1:
|
|
||||||
if not isp(n):
|
|
||||||
if not test(n):
|
|
||||||
print n
|
|
||||||
break
|
|
||||||
n += 2
|
|
||||||
|
|
||||||
#kkkk = input('end')
|
|
||||||
|
69
python/47.py
69
python/47.py
@ -1,37 +1,40 @@
|
|||||||
def factor(x):
|
|
||||||
out = []
|
|
||||||
if x % 2 == 0:
|
|
||||||
out.append(2)
|
|
||||||
while x % 2 == 0:
|
|
||||||
x /= 2
|
|
||||||
i = 3
|
|
||||||
while 1:
|
|
||||||
if x % i == 0:
|
|
||||||
out.append(i)
|
|
||||||
while x % i == 0:
|
|
||||||
x /= i
|
|
||||||
i += 2
|
|
||||||
if i ** 2 > x:
|
|
||||||
out.append(x)
|
|
||||||
break
|
|
||||||
while out.count(1):
|
|
||||||
out.remove(1)
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
from tools import number_theory
|
||||||
|
|
||||||
def main(same):
|
def num_factor(num):
|
||||||
n = 6
|
factor = []
|
||||||
num = 0
|
if not num % 2:
|
||||||
while num != same:
|
factor.append(2)
|
||||||
if len(factor(n)) == same:
|
while not num % 2:
|
||||||
num += 1
|
num //= 2
|
||||||
else:
|
p = 3
|
||||||
num = 0
|
while p * p < num:
|
||||||
n += 1
|
if not num % p:
|
||||||
return n
|
factor.append(p)
|
||||||
|
while not num % p:
|
||||||
|
num //= p
|
||||||
|
p += 2
|
||||||
|
if 1 < num:
|
||||||
|
factor.append(num)
|
||||||
|
return factor
|
||||||
|
|
||||||
|
def find(count, a, b):
|
||||||
|
seq = 0
|
||||||
|
a += 1
|
||||||
|
while b + seq >= count + a:
|
||||||
|
if len(num_factor(a)) == count:
|
||||||
|
seq += 1
|
||||||
|
else:
|
||||||
|
seq = 0
|
||||||
|
if seq == count:
|
||||||
|
return a - count + 1
|
||||||
|
a += 1
|
||||||
|
|
||||||
maxx = 4
|
def search(count, limit):
|
||||||
a = main(maxx)
|
prime = list(number_theory.make_prime(limit))
|
||||||
for i in xrange(1, maxx + 1):
|
for i in range(len(prime) - 1):
|
||||||
print a - i, factor(a - i)
|
get = find(count, prime[i], prime[i + 1])
|
||||||
|
if get:
|
||||||
|
return get
|
||||||
|
|
||||||
|
print(search(4, 200000))
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
total = 0
|
|
||||||
|
|
||||||
for i in xrange(1, 1001):
|
from functools import reduce
|
||||||
total += i ** i
|
print(str(reduce(lambda x, y: x + y ** y, range(1, 1001), 0))[-10:])
|
||||||
|
|
||||||
print total % (10 ** 10)
|
|
||||||
|
@ -10,7 +10,7 @@ def pick(x, lis, out, a = 0):
|
|||||||
out.append([a, lis])
|
out.append([a, lis])
|
||||||
return
|
return
|
||||||
a *= 10
|
a *= 10
|
||||||
for i in xrange(len(lis)):
|
for i in range(len(lis)):
|
||||||
tmp = lis[:]
|
tmp = lis[:]
|
||||||
tmpa = a + lis[i]
|
tmpa = a + lis[i]
|
||||||
tmp.pop(i)
|
tmp.pop(i)
|
||||||
@ -21,7 +21,7 @@ def isp(x):
|
|||||||
return True
|
return True
|
||||||
if x <= 1 or x & 1 == 0:
|
if x <= 1 or x & 1 == 0:
|
||||||
return False
|
return False
|
||||||
for i in xrange(3, int(x ** 0.5) + 1, 2):
|
for i in range(3, int(x ** 0.5) + 1, 2):
|
||||||
if x % i == 0:
|
if x % i == 0:
|
||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
@ -45,4 +45,4 @@ def main():
|
|||||||
return str(n) + str(ii) + str(jj) #(n, ii, jj)
|
return str(n) + str(ii) + str(jj) #(n, ii, jj)
|
||||||
n += 1
|
n += 1
|
||||||
|
|
||||||
print main()
|
print(main())
|
||||||
|
38
python/5.py
38
python/5.py
@ -1,36 +1,8 @@
|
|||||||
# coding=utf-8
|
|
||||||
''' 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
|
|
||||||
What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20? '''
|
|
||||||
|
|
||||||
from time import time
|
from functools import reduce
|
||||||
|
from tools import number_theory
|
||||||
|
|
||||||
gcd = lambda x, y: (y == 0) and x or gcd(y, x % y)
|
def multu_lcm(l):
|
||||||
|
return reduce(number_theory.lcm, l)
|
||||||
|
|
||||||
|
print(multu_lcm(list(range(1, 21))))
|
||||||
def p1(maxx = 20):
|
|
||||||
maxx += 1
|
|
||||||
|
|
||||||
num = []
|
|
||||||
for i in range(maxx): num.append(i)
|
|
||||||
|
|
||||||
for i in range(2, maxx):
|
|
||||||
if num[i] > 1:
|
|
||||||
for j in range(i + 1, maxx):
|
|
||||||
if num[j] % num[i] == 0: num[j] /= num[i]
|
|
||||||
|
|
||||||
total = 1
|
|
||||||
for i in num[1 : maxx]: total *= num[i]
|
|
||||||
#print num
|
|
||||||
print total
|
|
||||||
|
|
||||||
|
|
||||||
def p2(maxx = 20):
|
|
||||||
n = 2
|
|
||||||
for i in xrange(3, maxx + 1):
|
|
||||||
if n % i != 0:
|
|
||||||
n = n * i / gcd(n, i)
|
|
||||||
return n
|
|
||||||
|
|
||||||
#p1(20)
|
|
||||||
|
|
||||||
print p2(50000)
|
|
||||||
|
73
python/50.py
73
python/50.py
@ -1,34 +1,49 @@
|
|||||||
# coding=utf8
|
|
||||||
|
|
||||||
prime = []
|
from tools import number_theory
|
||||||
total = 0
|
|
||||||
n = 2
|
|
||||||
|
|
||||||
def factor(x):
|
def is_prime(num):
|
||||||
x = int(x)
|
if not num % 2:
|
||||||
if x <= 1: return 0
|
return False
|
||||||
else:
|
for p in range(3, int(num ** 0.5) + 1, 2):
|
||||||
for i in xrange(2, int(x ** 0.5) + 1):
|
if not num % p:
|
||||||
if x % i == 0: break
|
return False
|
||||||
else: return x
|
return True
|
||||||
return i
|
|
||||||
|
|
||||||
while total <= 1000000:
|
def longest_slice(limit, prime):
|
||||||
if factor(n) == n:
|
for l in range(len(prime)):
|
||||||
total += n
|
if sum(prime[:l]) > limit:
|
||||||
prime.append(n)
|
return (l - 1, sum(prime[:l - 1]))
|
||||||
n += 1
|
|
||||||
|
|
||||||
def search():
|
def reduce_slice(limit, prime, start, length, tale):
|
||||||
for length in xrange(len(prime) - 1, 2, -1):
|
tale -= prime[start]
|
||||||
for start in xrange(0, len(prime) - length + 1):
|
start += 1
|
||||||
sump = 0
|
t = tale
|
||||||
for tmp in prime[start: start + length]:
|
while True:
|
||||||
sump += tmp
|
t = tale - prime[start] + prime[start + length]
|
||||||
if factor(sump) == sump:
|
if t > limit:
|
||||||
print sump
|
break
|
||||||
print prime[start: start + length]
|
tale = t
|
||||||
return 0
|
return (start, tale)
|
||||||
|
|
||||||
if __name__ == '__main__':
|
def shift_slice(limit, prime, start, length, tale):
|
||||||
search()
|
for s in range(start - 1, -1, -1):
|
||||||
|
tale = tale + prime[s] - prime[s + length]
|
||||||
|
if is_prime(tale):
|
||||||
|
return (tale, length)
|
||||||
|
|
||||||
|
def search(limit):
|
||||||
|
prime = list(number_theory.make_prime(4000))
|
||||||
|
length, tale = longest_slice(limit, prime)
|
||||||
|
if is_prime(tale):
|
||||||
|
return (tale, length)
|
||||||
|
start = 0
|
||||||
|
while length > 1:
|
||||||
|
length -= 1
|
||||||
|
start, tale = reduce_slice(limit, prime, start, length, tale)
|
||||||
|
if is_prime(tale):
|
||||||
|
return (tale, length)
|
||||||
|
get = shift_slice(limit, prime, start, length, tale)
|
||||||
|
if get:
|
||||||
|
return get
|
||||||
|
|
||||||
|
print(search(1000000))
|
||||||
|
13
python/51.py
13
python/51.py
@ -1,3 +1,4 @@
|
|||||||
|
'''
|
||||||
from string import maketrans, translate
|
from string import maketrans, translate
|
||||||
|
|
||||||
def numbreak(x):
|
def numbreak(x):
|
||||||
@ -9,7 +10,7 @@ def numbreak(x):
|
|||||||
|
|
||||||
def numloop(x, a, lis):
|
def numloop(x, a, lis):
|
||||||
out = []
|
out = []
|
||||||
for i in xrange(10 - a):
|
for i in range(10 - a):
|
||||||
tt = maketrans(str(a), str(i + a))
|
tt = maketrans(str(a), str(i + a))
|
||||||
tmp = int(translate(str(x), tt))
|
tmp = int(translate(str(x), tt))
|
||||||
if isp(tmp, lis):
|
if isp(tmp, lis):
|
||||||
@ -45,13 +46,19 @@ def main():
|
|||||||
xx = 56003
|
xx = 56003
|
||||||
while 1:
|
while 1:
|
||||||
ss = numbreak(xx)
|
ss = numbreak(xx)
|
||||||
for syn in xrange(3):
|
for syn in range(3):
|
||||||
if syn in ss:
|
if syn in ss:
|
||||||
tmp = numloop(xx, syn, prime)
|
tmp = numloop(xx, syn, prime)
|
||||||
if len(tmp) >= 8:
|
if len(tmp) >= 8:
|
||||||
print xx, tmp
|
print(xx, tmp)
|
||||||
return
|
return
|
||||||
xx += 2
|
xx += 2
|
||||||
while not isp(xx, prime): xx += 2
|
while not isp(xx, prime): xx += 2
|
||||||
|
|
||||||
main()
|
main()
|
||||||
|
'''
|
||||||
|
|
||||||
|
from tools import number_theory
|
||||||
|
|
||||||
|
prime = list(number_theory.make_prime(1000))
|
||||||
|
print(prime)
|
||||||
|
33
python/52.py
33
python/52.py
@ -1,24 +1,15 @@
|
|||||||
def divnum(x):
|
|
||||||
out = []
|
|
||||||
while x > 0:
|
|
||||||
out.append(x % 10)
|
|
||||||
x /= 10
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
def multi_same(num, multi):
|
||||||
|
s = set(str(num))
|
||||||
|
for m in range(multi, 1, -1):
|
||||||
|
if set(str(num * m)) != s:
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
def testnum(x, n):
|
def search(multi):
|
||||||
a = divnum(x)
|
num = 124847
|
||||||
for i in xrange(2, n + 1):
|
while not multi_same(num, multi):
|
||||||
b = divnum(x * i)
|
num += 1
|
||||||
if set(a) != set(b):
|
return num
|
||||||
return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
|
print(search(6))
|
||||||
n = 1
|
|
||||||
while n < 1000000:
|
|
||||||
if testnum(n, 6):
|
|
||||||
break
|
|
||||||
n += 1
|
|
||||||
for i in xrange(1, 7):
|
|
||||||
print n * i
|
|
||||||
|
34
python/53.py
34
python/53.py
@ -1,26 +1,14 @@
|
|||||||
def C(x, y):
|
|
||||||
if x * 2 > y:
|
|
||||||
return C(y - x, y)
|
|
||||||
out = 1
|
|
||||||
for i in xrange(y, y - x, -1):
|
|
||||||
out *= i
|
|
||||||
for i in xrange(1, x + 1):
|
|
||||||
out /= i
|
|
||||||
return out
|
|
||||||
|
|
||||||
total = []
|
import time
|
||||||
for i in xrange(1, 101):
|
time.clock()
|
||||||
j = 0
|
|
||||||
tmp = 0
|
|
||||||
for j in xrange(i + 1):
|
|
||||||
tmp = C(j, i)
|
|
||||||
if tmp < 1000000:
|
|
||||||
total.append((j, i, tmp))
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
if 2 * j < i:
|
|
||||||
for j in xrange(j - 1, -1, -1):
|
|
||||||
total.append((i - j, i))
|
|
||||||
|
|
||||||
|
def search(limit, count):
|
||||||
|
l = [1, 1]
|
||||||
|
tale = 0
|
||||||
|
while len(l) < count + 2:
|
||||||
|
tale += len(list(filter(lambda x: x > limit - 1, l)))
|
||||||
|
l = list(map(lambda x: x[0] + x[1], zip(l + [0], [0] + l)))
|
||||||
|
return tale
|
||||||
|
|
||||||
print 103 * 50 - len(total)
|
print(search(1000000, 100))
|
||||||
|
print(time.clock())
|
||||||
|
@ -16,7 +16,7 @@ def calc(x):
|
|||||||
step = 1
|
step = 1
|
||||||
dic = {4:[], 3:[], 2:[], 1:[]}
|
dic = {4:[], 3:[], 2:[], 1:[]}
|
||||||
same = 1
|
same = 1
|
||||||
for i in xrange(1, len(num)):
|
for i in range(1, len(num)):
|
||||||
diff = num[i] - num[i - 1]
|
diff = num[i] - num[i - 1]
|
||||||
if diff == 0:
|
if diff == 0:
|
||||||
same += 1
|
same += 1
|
||||||
@ -48,7 +48,7 @@ def calc(x):
|
|||||||
return (flag, 0, dic.get(1))
|
return (flag, 0, dic.get(1))
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
ff = open('poker.txt', 'r')
|
ff = open('../resource/poker.txt', 'r')
|
||||||
out = 0
|
out = 0
|
||||||
for line in ff.readlines():
|
for line in ff.readlines():
|
||||||
strlis = line.split(' ')
|
strlis = line.split(' ')
|
||||||
@ -58,4 +58,4 @@ def main():
|
|||||||
return out
|
return out
|
||||||
|
|
||||||
#print calc(['7C','4C','4C','4C','7C'])
|
#print calc(['7C','4C','4C','4C','7C'])
|
||||||
print main()
|
print(main())
|
||||||
|
69
python/55.py
69
python/55.py
@ -1,39 +1,34 @@
|
|||||||
def revnum(x):
|
|
||||||
out = 0
|
|
||||||
while x != 0:
|
|
||||||
out *= 10
|
|
||||||
out += x % 10
|
|
||||||
x /= 10
|
|
||||||
return out
|
|
||||||
|
|
||||||
def isL(x_ori):
|
|
||||||
x = x_ori
|
|
||||||
x += revnum(x)
|
|
||||||
n = 0
|
|
||||||
while n < 50:
|
|
||||||
x_ = revnum(x)
|
|
||||||
if x_ == x:
|
|
||||||
return False
|
|
||||||
x += x_
|
|
||||||
n += 1
|
|
||||||
return True
|
|
||||||
|
|
||||||
def test(x):
|
|
||||||
n = 0
|
|
||||||
while n < 50:
|
|
||||||
print x
|
|
||||||
x_ = revnum(x)
|
|
||||||
if x == x_: break
|
|
||||||
x += x_
|
|
||||||
n += 1
|
|
||||||
|
|
||||||
|
|
||||||
import time
|
import time
|
||||||
a0 = time.clock()
|
time.clock()
|
||||||
be = []
|
|
||||||
for i in xrange(1, 10001):
|
def is_sync(num):
|
||||||
if isL(i):
|
s = str(num)
|
||||||
be.append(i)
|
return s == s[::-1]
|
||||||
a1 = time.clock()
|
|
||||||
print be
|
def is_lic(num, lic_set, non_set):
|
||||||
print a1 - a0
|
step = set([num])
|
||||||
|
for i in range(50):
|
||||||
|
num = num + int(str(num)[::-1])
|
||||||
|
step.add(num)
|
||||||
|
if num in lic_set:
|
||||||
|
return (True, step)
|
||||||
|
if num in non_set:
|
||||||
|
return (False, step)
|
||||||
|
if is_sync(num):
|
||||||
|
return (False, step)
|
||||||
|
return (True, step)
|
||||||
|
|
||||||
|
def search(limit):
|
||||||
|
lic_set = set()
|
||||||
|
non_set = set()
|
||||||
|
for x in range(1, limit + 1):
|
||||||
|
judge, step = is_lic(x, lic_set, non_set)
|
||||||
|
if judge:
|
||||||
|
lic_set |= set(filter(lambda x: x <= limit, step))
|
||||||
|
else:
|
||||||
|
non_set |= set(filter(lambda x: x <= limit, step))
|
||||||
|
return lic_set
|
||||||
|
|
||||||
|
print(len(search(10000)))
|
||||||
|
print(time.clock())
|
||||||
|
24
python/56.py
24
python/56.py
@ -1,15 +1,13 @@
|
|||||||
def numsum(x):
|
|
||||||
out = 0
|
|
||||||
while x > 0:
|
|
||||||
out += x % 10
|
|
||||||
x /= 10
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
def search(limit):
|
||||||
|
maxi = [0, 0, 0]
|
||||||
|
for x in range(1, limit + 1):
|
||||||
|
num = 1
|
||||||
|
for y in range(limit):
|
||||||
|
num *= x
|
||||||
|
s = sum(map(lambda x: int(x), str(num)))
|
||||||
|
if s > maxi[0]:
|
||||||
|
maxi = [s, x, y + 1]
|
||||||
|
return maxi
|
||||||
|
|
||||||
mmax = [0, 0, 0]
|
print(search(100))
|
||||||
for i in xrange(1, 101):
|
|
||||||
for j in xrange(1, 101):
|
|
||||||
tmp = numsum(i ** j)
|
|
||||||
if tmp > mmax[0]:
|
|
||||||
mmax = [tmp, i, j]
|
|
||||||
print mmax
|
|
||||||
|
18
python/57.py
18
python/57.py
@ -1,10 +1,8 @@
|
|||||||
from math import log10
|
|
||||||
sq2 = [(1, 1)]
|
def iter_sqrt(limit):
|
||||||
count = 0
|
a, b = 2, 1
|
||||||
for i in xrange(1, 1001):
|
for i in range(limit):
|
||||||
last = sq2[len(sq2) - 1]
|
a, b = b + 2 * a, a
|
||||||
if int(log10(last[0])) > int(log10(last[1])):
|
yield a - b, b
|
||||||
print last
|
|
||||||
count += 1
|
print(len(list(filter(lambda x: len(str(x[0])) > len(str(x[1])), iter_sqrt(1000)))))
|
||||||
sq2.append((last[0] + 2 * last[1], last[0] + last[1]))
|
|
||||||
print count
|
|
||||||
|
40
python/58.py
40
python/58.py
@ -1,28 +1,20 @@
|
|||||||
laymax = lambda x: (2 * x + 1) ** 2
|
|
||||||
|
|
||||||
def isp(x):
|
def is_prime(x):
|
||||||
if x == 2:
|
for p in range(3, int(x ** 0.5) + 1, 2):
|
||||||
|
if x % p == 0:
|
||||||
|
return False
|
||||||
return True
|
return True
|
||||||
if x <= 1 or x & 1 == 0:
|
|
||||||
return False
|
|
||||||
for i in xrange(3, int(x ** 0.5) + 1, 2):
|
|
||||||
if x % i == 0:
|
|
||||||
return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
be = 3
|
def search(percent):
|
||||||
non = 2
|
n = 7
|
||||||
|
prime = 8
|
||||||
|
total = 13
|
||||||
|
while prime / total > percent:
|
||||||
|
n += 2
|
||||||
|
total += 4
|
||||||
|
for num in range((n - 3) * n + 3, n * n - 1, n - 1):
|
||||||
|
if is_prime(num):
|
||||||
|
prime += 1
|
||||||
|
return n
|
||||||
|
|
||||||
i = 2
|
print(search(0.1))
|
||||||
while 9 * be >= non:
|
|
||||||
tmp = laymax(i)
|
|
||||||
for j in xrange(4):
|
|
||||||
#print float(be) / (be + non)
|
|
||||||
if isp(tmp):
|
|
||||||
be += 1
|
|
||||||
else:
|
|
||||||
non += 1
|
|
||||||
tmp -= 2 * i
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
print 2 * i - 1
|
|
||||||
|
28
python/6.py
28
python/6.py
@ -1,16 +1,14 @@
|
|||||||
# coding=utf-8
|
|
||||||
''' The sum of the squares of the first ten natural numbers is,
|
|
||||||
1^2 + 2^2 + ... + 10^2 = 385
|
|
||||||
The square of the sum of the first ten natural numbers is,
|
|
||||||
(1 + 2 + ... + 10)^2 = 552 = 3025
|
|
||||||
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
|
|
||||||
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum. '''
|
|
||||||
|
|
||||||
total = 0
|
from functools import reduce
|
||||||
num = []
|
|
||||||
for i in range(100): num.append(i + 1)
|
def product(p, q):
|
||||||
for i in range(100):
|
multi = 0
|
||||||
for j in range(i + 1, 100):
|
while True:
|
||||||
total += num[i] * num[j]
|
q.pop(0)
|
||||||
total *= 2
|
if not q:
|
||||||
print total
|
break
|
||||||
|
multi += reduce(lambda x, y: x + y[0] * y[1], zip(p, q), 0)
|
||||||
|
return multi
|
||||||
|
|
||||||
|
limit = 10000 + 1
|
||||||
|
print(2 * product(list(range(1, limit)), list(range(1, limit))))
|
||||||
|
42
python/68.py
Normal file
42
python/68.py
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
m = 0
|
||||||
|
|
||||||
|
def eq(l):
|
||||||
|
if l[0] + l[1] - l[2] - l[5]:
|
||||||
|
return False
|
||||||
|
if l[2] + l[3] - l[4] - l[7]:
|
||||||
|
return False
|
||||||
|
if l[4] + l[5] - l[6] - l[9]:
|
||||||
|
return False
|
||||||
|
if l[6] + l[7] - l[8] - l[1]:
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
def ext(l):
|
||||||
|
o = l[1::2]
|
||||||
|
e = l[::2]
|
||||||
|
while e[0] != min(e):
|
||||||
|
o = o[1:] + o[0:1]
|
||||||
|
e = e[1:] + e[0:1]
|
||||||
|
o = list(map(lambda x: str(x), o))
|
||||||
|
e = list(map(lambda x: str(x), e))
|
||||||
|
s = o[1:] + o[0:1]
|
||||||
|
return ''.join([''.join(x) for x in zip(e, o, s)])
|
||||||
|
|
||||||
|
def num(l):
|
||||||
|
bn = ext(l)
|
||||||
|
if len(bn) != 16:
|
||||||
|
return 0
|
||||||
|
return int(bn)
|
||||||
|
|
||||||
|
def mksq(sq, pl):
|
||||||
|
if not pl:
|
||||||
|
if eq(sq):
|
||||||
|
n = num(sq)
|
||||||
|
global m
|
||||||
|
if n > m:
|
||||||
|
m = n
|
||||||
|
print(m)
|
||||||
|
for it in pl:
|
||||||
|
mksq(sq + [it], list(filter(lambda x: x != it, pl)))
|
||||||
|
|
||||||
|
mksq([], list(range(1, 11)))
|
29
python/7.py
29
python/7.py
@ -1,23 +1,14 @@
|
|||||||
# coding=utf-8
|
|
||||||
''' By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
|
|
||||||
What is the 10 001st prime number? '''
|
|
||||||
|
|
||||||
import math
|
import math
|
||||||
|
from tools import number_theory
|
||||||
|
|
||||||
def countp(count):
|
def mkp(count):
|
||||||
if count == 1: return 2
|
limit = int(count / math.log(count))
|
||||||
prime = [2]
|
limit = count * count // limit * 11 // 10
|
||||||
x = 1
|
while True:
|
||||||
while 1:
|
prime = list(number_theory.make_prime(limit))
|
||||||
for i in xrange(x ** 2 + (x + 1) % 2, (x + 1) ** 2, 2):
|
if count < len(prime):
|
||||||
for p in prime:
|
return prime[count - 1]
|
||||||
if i % p == 0: break
|
limit = limit * 11 // 10
|
||||||
else: count -= 1
|
|
||||||
if count == 0: return i
|
|
||||||
x += 1
|
|
||||||
for p in prime:
|
|
||||||
if x % p == 0: break
|
|
||||||
else: prime.append(x)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
print(mkp(10001))
|
||||||
print countp(10001)
|
|
||||||
|
25
python/71.py
25
python/71.py
@ -1,15 +1,16 @@
|
|||||||
f = lambda x: 3 * x / 7
|
|
||||||
gcd = lambda x, y: (y == 0) and x or gcd(y, x % y)
|
|
||||||
|
|
||||||
maxx = [1] * 3
|
def gcd(a, b):
|
||||||
|
return 0 == b and a or gcd(b, a % b)
|
||||||
|
|
||||||
for i in xrange(1, 1000001):
|
def t(limit, a, b):
|
||||||
if i % 7 == 0:
|
l = []
|
||||||
continue
|
for m in range(limit + 1, 1, -1):
|
||||||
tmpi = f(i)
|
n, d = divmod(m * a, b)
|
||||||
if gcd(i, tmpi) == 1:
|
if gcd(n, m) == 1:
|
||||||
tmp = 3.0 / 7 - float(tmpi) / i
|
l.append((d / m, n, m))
|
||||||
if tmp < maxx[0]:
|
if 1 == d:
|
||||||
maxx = [tmp, tmpi, i]
|
break
|
||||||
|
for x in sorted(l, key=lambda x: x[0]):
|
||||||
|
return x[1:]
|
||||||
|
|
||||||
print maxx
|
print(t(1000000, 3, 7))
|
25
python/8.py
25
python/8.py
@ -1,19 +1,12 @@
|
|||||||
# coding=utf-8
|
|
||||||
''' Discover the largest product of five consecutive digits in the 1000-digit number. '''
|
|
||||||
|
|
||||||
def va(string):
|
from functools import reduce
|
||||||
x = 1
|
|
||||||
for i in range(len(string)):
|
|
||||||
x *= ord(string[i]) - ord('0')
|
|
||||||
return x
|
|
||||||
|
|
||||||
ch = '731671765313306249192251196744265747423553491949349698352031277450632623957831801698480186947885184385861560789112949495459501737958331952853208805511125406987471585238630507156932909632952274430435576689664895044524452316173185640309871112172238311362229893423380308135336276614282806444486645238749303589072962904915604407723907138105158593079608667017242712188399879790879227492190169972088809377665727333001053367881220235421809751254540594752243258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450'
|
def seek(maxi, length, context):
|
||||||
max = [0, 0, '']
|
if length > len(context):
|
||||||
for i in range(len(ch) - 5):
|
return maxi
|
||||||
temp = va(ch[i : i + 5])
|
multi = reduce(lambda x, y: x * int(y), context[:length], 1)
|
||||||
if temp > max[1]:
|
return seek(max(maxi, multi), length, context[1:])
|
||||||
max[0] = i
|
|
||||||
max[1] = temp
|
|
||||||
max[2] = ch[i : i + 5]
|
|
||||||
|
|
||||||
print max
|
print(seek(0, 13,
|
||||||
|
'731671765313306249192251196744265747423553491949349698352031277450632623957831801698480186947885184385861560789112949495459501737958331952853208805511125406987471585238630507156932909632952274430435576689664895044524452316173185640309871112172238311362229893423380308135336276614282806444486645238749303589072962904915604407723907138105158593079608667017242712188399879790879227492190169972088809377665727333001053367881220235421809751254540594752243258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450'
|
||||||
|
))
|
||||||
|
50
python/80.py
50
python/80.py
@ -1,37 +1,25 @@
|
|||||||
from math import sqrt, log10
|
|
||||||
|
def fiter(a, finit, fcntn, ftrns):
|
||||||
|
x = finit(a)
|
||||||
|
while fcntn(a, x):
|
||||||
|
x = ftrns(a, x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
def newton(a, n = 2):
|
def newton_root(a):
|
||||||
x = 0
|
return fiter(a,
|
||||||
x_ = int(sqrt(a))
|
lambda x: x // 2,
|
||||||
if x_ ** n == a:
|
lambda p, x: not (0 < p - x ** 2 < 2 * x + 1),
|
||||||
return x_
|
lambda p, x: (x + p // x) // 2)
|
||||||
while abs(x - x_) > 1:
|
|
||||||
x = x_
|
|
||||||
tmp = x ** (n - 1)
|
|
||||||
x_ = x - (tmp * x - a) / tmp / n
|
|
||||||
x_ = int(x_)
|
|
||||||
while x ** n > a:
|
|
||||||
x -= 1
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def numsum(x):
|
def all_root(limit, digit):
|
||||||
total = 0
|
root_sum = []
|
||||||
while x != 0:
|
digit -= 1
|
||||||
total += x % 10
|
for x in range(2, limit + 1):
|
||||||
x /= 10
|
if int(x ** 0.5) ** 2 != x:
|
||||||
return total
|
root_sum.append(sum(map(lambda x: int(x), str(newton_root(100 ** digit * x)))))
|
||||||
|
return root_sum
|
||||||
|
|
||||||
def main(maxx):
|
|
||||||
ss = 0
|
|
||||||
for i in xrange(maxx + 1):
|
|
||||||
if int(sqrt(i)) ** 2 == i:
|
|
||||||
continue
|
|
||||||
tmp = newton(i * 100 ** 99)
|
|
||||||
ss += numsum(tmp)
|
|
||||||
print ss
|
|
||||||
|
|
||||||
|
|
||||||
|
print(sum(all_root(100, 100)))
|
||||||
|
|
||||||
|
74
python/81.py
74
python/81.py
@ -1,43 +1,39 @@
|
|||||||
a = []
|
|
||||||
ff = open('matrix.txt.', 'r')
|
|
||||||
for i in ff.readlines():
|
|
||||||
tmp = i.split(',')
|
|
||||||
for j in xrange(len(tmp)):
|
|
||||||
tmp[j] = int(tmp[j])
|
|
||||||
a.append(tmp)
|
|
||||||
ff.close()
|
|
||||||
|
|
||||||
path = [[a[0][0], [a[0][0]]]]
|
m = [
|
||||||
n = len(a)
|
[131, 673, 234, 103, 18],
|
||||||
|
[201, 96, 342, 965, 150],
|
||||||
|
[630, 803, 746, 422, 111],
|
||||||
|
[537, 699, 497, 121, 956],
|
||||||
|
[805, 732, 524, 37, 331]
|
||||||
|
]
|
||||||
|
|
||||||
for k in xrange(1, n):
|
def getm(file):
|
||||||
pathtmp = []
|
matrix = []
|
||||||
tmp = [a[k][0] + path[0][0], path[0][1][:]]
|
for line in open(file, 'r'):
|
||||||
tmp[1].append(a[k][0])
|
matrix.append(list(map(lambda x: int(x), line.split(','))))
|
||||||
pathtmp.append(tmp)
|
return matrix
|
||||||
for i in xrange(1, k):
|
|
||||||
if path[i - 1][0] < path[i][0]:
|
|
||||||
flag = i - 1
|
|
||||||
else:
|
|
||||||
flag = i
|
|
||||||
tmp = [path[flag][0] + a[k - i][i], path[flag][1][:]]
|
|
||||||
tmp[1].append(a[k - i][i])
|
|
||||||
pathtmp.append(tmp)
|
|
||||||
tmp = [a[0][k] + path[k - 1][0], path[k - 1][1][:]]
|
|
||||||
tmp[1].append(a[0][k])
|
|
||||||
pathtmp.append(tmp)
|
|
||||||
path = pathtmp
|
|
||||||
|
|
||||||
for k in xrange(n, 2 * n - 1):
|
def calc_short(short, nl):
|
||||||
pathtmp = []
|
for i in range(len(nl)):
|
||||||
for i in xrange(2 * n - 1 - k):
|
nl[i] += min(short[i], short[i + 1])
|
||||||
if path[i][0] < path[i + 1][0]:
|
return nl
|
||||||
flag = i
|
|
||||||
else:
|
|
||||||
flag = i + 1
|
|
||||||
tmp = [path[flag][0] + a[n - 1 - i][k + i + 1 - n], path[flag][1][:]]
|
|
||||||
tmp[1].append(a[n - 1 - i][k + i + 1 - n])
|
|
||||||
pathtmp.append(tmp)
|
|
||||||
path = pathtmp
|
|
||||||
|
|
||||||
print path
|
def short_lu(matrix):
|
||||||
|
short = [0]
|
||||||
|
for x in range(len(matrix)):
|
||||||
|
nl = []
|
||||||
|
for i in range(x + 1):
|
||||||
|
nl.append(matrix[x - i][i])
|
||||||
|
short = calc_short(short[:1] + short + short[-1:], nl)
|
||||||
|
return short
|
||||||
|
|
||||||
|
def short_rd(matrix, short):
|
||||||
|
for x in range(len(matrix), (len(matrix) - 1) * 2 + 1):
|
||||||
|
nl = []
|
||||||
|
for i in range(x - len(matrix) + 1, len(matrix)):
|
||||||
|
nl.append(matrix[x - i][i])
|
||||||
|
short = calc_short(short, nl)
|
||||||
|
return short[0]
|
||||||
|
|
||||||
|
m = getm('../resource/matrix.txt')
|
||||||
|
print(short_rd(m, short_lu(m)))
|
||||||
|
123
python/82.py
123
python/82.py
@ -1,88 +1,45 @@
|
|||||||
a = []
|
|
||||||
ff = open('../matrix.txt', 'r')
|
|
||||||
for i in ff.readlines():
|
|
||||||
tmp = i.split(',')
|
|
||||||
for j in xrange(len(tmp)):
|
|
||||||
tmp[j] = int(tmp[j])
|
|
||||||
a.append(tmp)
|
|
||||||
ff.close()
|
|
||||||
|
|
||||||
n = len(a)
|
m = [
|
||||||
|
[131, 673, 234, 103, 18],
|
||||||
|
[201, 96, 342, 965, 150],
|
||||||
|
[630, 803, 746, 422, 111],
|
||||||
|
[537, 699, 497, 121, 956],
|
||||||
|
[805, 732, 524, 37, 331]
|
||||||
|
]
|
||||||
|
|
||||||
path = []
|
def getm(file):
|
||||||
for i in xrange(n):
|
matrix = []
|
||||||
path.append([a[i][-1] + a[i][-2], []])
|
for line in open(file, 'r'):
|
||||||
|
matrix.append(list(map(lambda x: int(x), line.split(','))))
|
||||||
|
return matrix
|
||||||
|
|
||||||
for j in xrange(n - 3, -1, -1):
|
def rev(matrix):
|
||||||
#newpath = [a[0][j] + min(path[0][0], a[1][j] + path[1][0])]
|
n = []
|
||||||
if path[0][0] <= a[1][j] + path[1][0]:
|
scale = len(matrix)
|
||||||
tmp = path[0][1] + [(0, j)]
|
for j in range(scale):
|
||||||
newpath.append([path[0][0] + a[0][j], tmp])
|
line = []
|
||||||
else:
|
for i in range(scale):
|
||||||
tmp = path[1][1] + [(1, j), (0, j)]
|
line.append(matrix[i][j])
|
||||||
newpath.append([path[1][0] + a[1][j] + a[0][j], tmp])
|
n.append(line)
|
||||||
for i in xrange(1, n - 1):
|
return n
|
||||||
better = min(a[i - 1][j] + path[i - 1][0], path[i][0], a[i + 1][j] + path[i + 1][0])
|
|
||||||
#newpath.append(a[i][j] + better)
|
|
||||||
if better == path[i][0]:
|
|
||||||
tmp = path[i][1] + [(i, j)]
|
|
||||||
newpath.append([path[i][0] + a[i][j], tmp])
|
|
||||||
elif better == a[i - 1][j] + path[i - 1][0]:
|
|
||||||
tmp = path[i - 1][1] + [(i - 1, j), (i, j)]
|
|
||||||
newpath.append([])
|
|
||||||
#newpath.append(a[-1][j] + min(path[-1], a[-2][j] + path[-2]))
|
|
||||||
if path[-1][0] <= a[-2][j] + path[-2][0]:
|
|
||||||
tmp = path[-1][1] + [(n - 1, j)]
|
|
||||||
newpath.append([a[-1][j] + path[-1][0], tmp])
|
|
||||||
else:
|
|
||||||
tmp = path[-1][1] + [(n - 2, j), (n - 1, j)]
|
|
||||||
newpath.append([a[-1][j] + a[-2][j] + path[-2][0], tmp])
|
|
||||||
path = newpath
|
|
||||||
|
|
||||||
|
def trace(matrix):
|
||||||
|
short = matrix.pop(0)
|
||||||
|
for line in matrix:
|
||||||
|
ns = []
|
||||||
|
for i in range(len(line)):
|
||||||
|
vs = 0
|
||||||
|
vl = [short[i]]
|
||||||
|
for k in range(i - 1, -1, -1):
|
||||||
|
vs += line[k]
|
||||||
|
vl.append(vs + short[k])
|
||||||
|
vs = 0
|
||||||
|
for k in range(i + 1, len(line)):
|
||||||
|
vs += line[k]
|
||||||
|
vl.append(vs + short[k])
|
||||||
|
ns.append(min(vl) + line[i])
|
||||||
|
short = ns
|
||||||
|
return short
|
||||||
|
|
||||||
print sorted(path)
|
#print(min(trace(rev(m))))
|
||||||
|
print(min(trace(rev(getm('../resource/matrix.txt')))))
|
||||||
'''
|
|
||||||
|
|
||||||
path = []
|
|
||||||
for i in xrange(n):
|
|
||||||
path.append([a[i][0], [[i, 0]]])
|
|
||||||
|
|
||||||
|
|
||||||
for y in xrange(1, n):
|
|
||||||
pathtmp = []
|
|
||||||
for x in xrange(n):
|
|
||||||
tmp = [[0, 0]]
|
|
||||||
#papapa = 0
|
|
||||||
if x - 1 >= 0:
|
|
||||||
if a[x - 1][y] < a[x][y - 1]:
|
|
||||||
tmp.append([a[x - 1][y], -1, [x - 1, y]])
|
|
||||||
path[x] =
|
|
||||||
else:
|
|
||||||
if not [x, y - 1] in path[x - 1][1]:
|
|
||||||
tmp.append([a[x][y - 1], -1, [x, y - 1]])
|
|
||||||
#else:
|
|
||||||
#papapa += 1
|
|
||||||
if x + 1 < n:
|
|
||||||
if a[x + 1][y] < a[x][y - 1]:
|
|
||||||
tmp.append([a[x + 1][y], 1, [x + 1, y]])
|
|
||||||
else:
|
|
||||||
if not [x, y - 1] in path[x + 1][1]:
|
|
||||||
tmp.append([a[x][y - 1], 1, [x, y - 1]])
|
|
||||||
#else:
|
|
||||||
#papapa += 2
|
|
||||||
for item in tmp:
|
|
||||||
item[0] += path[x + item[1]][0]
|
|
||||||
tmp.sort()
|
|
||||||
#if papapa != 0:
|
|
||||||
#print papapa, "**", tmp
|
|
||||||
if len(tmp[0]) > 2:
|
|
||||||
last = [tmp[0][-1], [x, y]]
|
|
||||||
else:
|
|
||||||
last = [[x, y]]
|
|
||||||
pathtmp.append([tmp[0][0] + a[x][y], path[x + tmp[0][1]][1] + last])
|
|
||||||
path = pathtmp
|
|
||||||
|
|
||||||
path.sort()
|
|
||||||
print path[0]
|
|
||||||
'''
|
|
||||||
|
47
python/85.py
47
python/85.py
@ -1,24 +1,31 @@
|
|||||||
def sum(m, n):
|
|
||||||
return m * n * (m + 1) * (n + 1) / 4
|
|
||||||
|
|
||||||
maxx = 2000000
|
def gen_tri(limit):
|
||||||
x = int((8 * maxx + 1) ** 0.5 / 2)
|
tale = 1
|
||||||
while sum(x, 1) < maxx: x += 1
|
base = 1
|
||||||
|
while tale < limit:
|
||||||
|
yield (base, tale)
|
||||||
|
base += 1
|
||||||
|
tale += base
|
||||||
|
|
||||||
orisub = abs(sum(x, 1) - maxx)
|
def tri_pair(num):
|
||||||
near = [orisub]
|
seq = int(((8 * num - 1) ** 0.5 - 1) / 2)
|
||||||
y = 1
|
return ((seq , (seq + 1) * seq // 2),
|
||||||
|
(seq + 1, (seq + 1) * (seq + 2) // 2))
|
||||||
|
|
||||||
while x > y:
|
def renew(result, limit, t_n, t_o):
|
||||||
tmp = maxx
|
cmpr = t_n[1] * t_o[1]
|
||||||
y_lst = y
|
new_result = [max(limit, cmpr) - min(limit, cmpr), t_n[0] * t_o[0]]
|
||||||
while tmp > maxx - orisub and y > 0:
|
if new_result[0] < result[0]:
|
||||||
tmp = sum(x, y)
|
return new_result
|
||||||
if abs(tmp - maxx) < near[0]:
|
else:
|
||||||
near = [abs(tmp - maxx), x, y]
|
return result
|
||||||
y -= 1
|
|
||||||
x -= 1
|
|
||||||
y = y_lst
|
|
||||||
while sum(x, y) < maxx: y += 1
|
|
||||||
|
|
||||||
print near[1] * near[2]
|
def search(limit):
|
||||||
|
result = [limit, 0]
|
||||||
|
for t_n in gen_tri(int(limit ** 0.5) + 1):
|
||||||
|
t_l, t_r = tri_pair(limit // t_n[1])
|
||||||
|
result = renew(result, limit, t_n, t_l)
|
||||||
|
result = renew(result, limit, t_n, t_r)
|
||||||
|
return result[1]
|
||||||
|
|
||||||
|
print(search(2000000))
|
||||||
|
51
python/86.py
51
python/86.py
@ -1,31 +1,28 @@
|
|||||||
def test_ori(a, b):
|
|
||||||
tmp = a ** 2 + b ** 2
|
|
||||||
sqr = int(tmp ** 0.5)
|
|
||||||
if tmp == sqr ** 2: return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
def test(a, b, c):
|
import time
|
||||||
if test_ori(b + c, a): return 1
|
|
||||||
return 0
|
|
||||||
|
|
||||||
def test1(a, b):
|
def is_sqrt(x, y):
|
||||||
if test_ori(b + b, a): return 1
|
z = x ** 2 + y ** 2
|
||||||
return 0
|
if int(z ** 0.5) ** 2 == z:
|
||||||
|
if x > y:
|
||||||
|
return x // 2 - x + y + 1
|
||||||
|
else:
|
||||||
|
return x // 2
|
||||||
|
return 0
|
||||||
|
|
||||||
total = 1975
|
def count(m):
|
||||||
n = 100
|
count = 0
|
||||||
while 1:
|
for a in range(1, m * 2 + 1):
|
||||||
tmp = 0
|
count += is_sqrt(a, m)
|
||||||
for i in xrange(2, 2 * n + 1):
|
return count
|
||||||
if test_ori(n, i):
|
|
||||||
#print i
|
|
||||||
tmp += i / 2
|
|
||||||
if i > n:
|
|
||||||
tmp -= i - n - 1
|
|
||||||
total += tmp
|
|
||||||
if total > 1000000:
|
|
||||||
break
|
|
||||||
#print n, tmp, total
|
|
||||||
n += 1
|
|
||||||
|
|
||||||
print n
|
def gen(limit):
|
||||||
|
m = 1
|
||||||
|
tale = 0
|
||||||
|
while tale < limit:
|
||||||
|
tale += count(m)
|
||||||
|
m += 1
|
||||||
|
return m - 1, tale
|
||||||
|
|
||||||
|
print(gen(1000000))
|
||||||
|
print(time.process_time())
|
||||||
|
62
python/88.py
62
python/88.py
@ -1,16 +1,50 @@
|
|||||||
def log2(x):
|
|
||||||
out = 0
|
|
||||||
while x > 0:
|
|
||||||
x /= 2
|
|
||||||
out += 1
|
|
||||||
return out - 1
|
|
||||||
|
|
||||||
def break(x):
|
from functools import reduce
|
||||||
x -= 1
|
|
||||||
n = int(x ** 0.5)
|
|
||||||
while x % n != 0:
|
|
||||||
n -= 1
|
|
||||||
return (n, x / n)
|
|
||||||
|
|
||||||
def A(k):
|
class Num:
|
||||||
dd
|
n = 0
|
||||||
|
l = []
|
||||||
|
over = False
|
||||||
|
|
||||||
|
def __init__(self, limit):
|
||||||
|
if limit < 2:
|
||||||
|
self.over = True
|
||||||
|
self.num = limit
|
||||||
|
self.l = [1] * limit
|
||||||
|
self.l[:2] = [2, 2]
|
||||||
|
|
||||||
|
def multi(self):
|
||||||
|
return reduce(lambda x, y: x * y, self.l, 1)
|
||||||
|
|
||||||
|
def add(self):
|
||||||
|
return sum(self.l)
|
||||||
|
|
||||||
|
def is_overload(self):
|
||||||
|
return self.multi() > self.add()
|
||||||
|
|
||||||
|
def inc(self):
|
||||||
|
if self.over:
|
||||||
|
return
|
||||||
|
if not self.is_overload():
|
||||||
|
self.l[0] += 1
|
||||||
|
else:
|
||||||
|
for i in range(len(self.l)):
|
||||||
|
if self.l[i + 1] < self.l[i]:
|
||||||
|
self.l[i + 1] += 1
|
||||||
|
self.l[:i] = [self.l[i + 1]] * (i + 1)
|
||||||
|
if self.is_overload():
|
||||||
|
self.over = True
|
||||||
|
|
||||||
|
def eq(self):
|
||||||
|
return self.multi() == self.add()
|
||||||
|
|
||||||
|
def get_min(self):
|
||||||
|
while not self.eq():
|
||||||
|
self.inc()
|
||||||
|
if self.over:
|
||||||
|
return NULL
|
||||||
|
return self.add()
|
||||||
|
|
||||||
|
for x in range(3, 20):
|
||||||
|
f = Num(x)
|
||||||
|
print(x, f.get_min())
|
||||||
|
13
python/9.py
13
python/9.py
@ -1,8 +1,7 @@
|
|||||||
# coding=utf-8
|
|
||||||
''' A Pythagorean triplet is a set of three natural numbers, a b c, for which,
|
|
||||||
a^2 + b^2 = c^2
|
|
||||||
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
|
||||||
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
|
||||||
Find the product abc. '''
|
|
||||||
|
|
||||||
import math
|
from math import sqrt
|
||||||
|
|
||||||
|
for x in range(int(5 * sqrt(10)) + 1, int(5 * sqrt(20)) + 1):
|
||||||
|
if not (500 % x):
|
||||||
|
y = 500 // x - x
|
||||||
|
print(2 * x * y * (x ** 4 - y ** 4))
|
||||||
|
47
python/tools/number_theory.py
Normal file
47
python/tools/number_theory.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
|
||||||
|
def gcd(x, y):
|
||||||
|
if 0 == y:
|
||||||
|
return x
|
||||||
|
else:
|
||||||
|
return gcd(y, x % y)
|
||||||
|
|
||||||
|
|
||||||
|
def lcm(x, y):
|
||||||
|
return x * y // gcd(x, y)
|
||||||
|
|
||||||
|
|
||||||
|
def make_prime(limit):
|
||||||
|
if limit < 5:
|
||||||
|
if limit < 2: return
|
||||||
|
yield 2
|
||||||
|
if limit < 3: return
|
||||||
|
yield 3
|
||||||
|
return
|
||||||
|
|
||||||
|
n = (limit + 1) // 6
|
||||||
|
|
||||||
|
a = [True] * n
|
||||||
|
b = [True] * n
|
||||||
|
|
||||||
|
for i in range((int(limit ** 0.5) + 1) // 6 + 1):
|
||||||
|
if a[i]:
|
||||||
|
p = 6 * i + 7
|
||||||
|
f = 7 * i + 7
|
||||||
|
g = 5 * i + 5
|
||||||
|
a[f::p] = [False] * ((n - f - 1) // p + 1)
|
||||||
|
b[g::p] = [False] * ((n - g - 1) // p + 1)
|
||||||
|
if b[i]:
|
||||||
|
p = 6 * i + 5
|
||||||
|
f = 5 * i + 3
|
||||||
|
g = 7 * i + 5
|
||||||
|
a[f::p] = [False] * ((n - f - 1) // p + 1)
|
||||||
|
b[g::p] = [False] * ((n - g - 1) // p + 1)
|
||||||
|
|
||||||
|
yield 2
|
||||||
|
yield 3
|
||||||
|
for i in range(n):
|
||||||
|
if b[i]:
|
||||||
|
yield 6 * i + 5
|
||||||
|
if a[i]:
|
||||||
|
yield 6 * i + 7
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user