add 131 133 135 137
This commit is contained in:
parent
37925f580b
commit
6fe1881e82
0
python/120.py
Executable file → Normal file
0
python/120.py
Executable file → Normal file
33
python/131.1.py
Normal file
33
python/131.1.py
Normal file
@ -0,0 +1,33 @@
|
||||
from tools import number_theory
|
||||
import math
|
||||
|
||||
def try_root(n):
|
||||
root = int(n ** 0.5)
|
||||
if root ** 2 == n:
|
||||
return root
|
||||
raise ValueError
|
||||
|
||||
def solve(p, k):
|
||||
num, mod = divmod((3 * k + try_root(k * (4 * p - 3 * k))) * k, 2 * (p - 3 * k))
|
||||
if not mod:
|
||||
return num
|
||||
raise ValueError
|
||||
|
||||
def try_n(p, offset):
|
||||
for k in range(int(p * offset) + 1, p // 3 + 1):
|
||||
try:
|
||||
return solve(p, k), k / p
|
||||
except:
|
||||
pass
|
||||
|
||||
def find(limit):
|
||||
offset = 0
|
||||
for p in number_theory.make_prime(limit):
|
||||
try:
|
||||
solve, offset = try_n(p, offset)
|
||||
print(solve, offset)
|
||||
yield solve
|
||||
except:
|
||||
pass
|
||||
|
||||
print(list(find(1000000)))
|
13
python/131.md
Normal file
13
python/131.md
Normal file
@ -0,0 +1,13 @@
|
||||
$$
|
||||
m^3=n^3+n^2p
|
||||
$$
|
||||
|
||||
let $m=n+k$ , then
|
||||
$$
|
||||
3n^2k+3nk^2+k^3=n^2p\\
|
||||
(p-3k)n^2-3k^2n-k^3=0
|
||||
$$
|
||||
witch $p>3k$ . solving this function, we get
|
||||
$$
|
||||
n = \frac{3k^2 \pm k\sqrt{4kp-3k^2}}{p-3k}
|
||||
$$
|
12
python/131.py
Normal file
12
python/131.py
Normal file
@ -0,0 +1,12 @@
|
||||
|
||||
from tools import number_theory
|
||||
|
||||
_eps = 0.0000000000001
|
||||
|
||||
def n_peak(p):
|
||||
for n in range(1, p):
|
||||
right = n ** 3 + p * (n ** 2)
|
||||
m = int(right ** (1 / 3) + _eps)
|
||||
print(n, m, right - m ** 3)
|
||||
|
||||
print(n_peak(19))
|
32
python/133.1.py
Normal file
32
python/133.1.py
Normal file
@ -0,0 +1,32 @@
|
||||
from tools import number_theory
|
||||
|
||||
def unit(p):
|
||||
base = 1
|
||||
loop = 1
|
||||
while True:
|
||||
base %= p
|
||||
if not base:
|
||||
return loop
|
||||
base = 10 * base + 1
|
||||
loop += 1
|
||||
|
||||
def is_dec(num):
|
||||
while not num % 2:
|
||||
num //= 2
|
||||
while not num % 5:
|
||||
num //= 5
|
||||
return 1 == num
|
||||
|
||||
def statistic(limit):
|
||||
prime = number_theory.make_prime(limit)
|
||||
next(prime)
|
||||
next(prime)
|
||||
next(prime)
|
||||
for p in prime:
|
||||
if is_dec(unit(p)):
|
||||
yield p
|
||||
|
||||
#print(list(statistic(100000)))
|
||||
get = [11, 17, 41, 73, 101, 137, 251, 257, 271, 353, 401, 449, 641, 751, 1201, 1409, 1601, 3541, 4001, 4801, 5051, 9091, 10753, 15361, 16001, 19841, 21001, 21401, 24001, 25601, 27961, 37501, 40961, 43201, 60101, 62501, 65537, 69857, 76001, 76801]
|
||||
|
||||
print(sum(set(number_theory.make_prime(100000)) - set(get)))
|
8
python/135.1.py
Normal file
8
python/135.1.py
Normal file
@ -0,0 +1,8 @@
|
||||
'''
|
||||
let x = y + d, z = y - d
|
||||
then x**2 - y**2 - z**2 = n can be written b**2 - 4bd + n = 0
|
||||
so b = 2d +- sqrt(4 * d**2 - n)
|
||||
let t**2 = 4 * d**2 - n, then (2d + t) * (2d - t) = n
|
||||
'''
|
||||
|
||||
def dual_factor(num):
|
52
python/137.md
Normal file
52
python/137.md
Normal file
@ -0,0 +1,52 @@
|
||||
$$
|
||||
A_F(x)= xF_1+x^2F_2+x^3F_3\cdots
|
||||
$$
|
||||
|
||||
$$
|
||||
xA_F(x)= \; x^2F_1+x^3F_2+x^4F_3+\cdots
|
||||
$$
|
||||
|
||||
$(1)+(2)$, and consider that $F_1=F_2$, then we have
|
||||
$$
|
||||
(1+x)A_F(x)=xF_2+x^2F_2+x^3F_3+\cdots
|
||||
$$
|
||||
so
|
||||
$$
|
||||
x(1+x)A_F(x)=A_F(x)-xF_1
|
||||
$$
|
||||
then
|
||||
$$
|
||||
A_F(x)=\frac{x}{1-x-x^2}
|
||||
$$
|
||||
we want that $A_F(x)$ could be a nature number, so let
|
||||
$$
|
||||
\frac{x}{1-x-x^2}=n
|
||||
$$
|
||||
then
|
||||
$$
|
||||
nx^2+(n+1)x-n=0
|
||||
$$
|
||||
solve this, get
|
||||
$$
|
||||
x=\frac{\sqrt{5n^2+2n+1}-(n+1)}{2n}
|
||||
$$
|
||||
only $5n^2+2n+1$ is square number that can make x to be a rational.
|
||||
|
||||
let's try to analyse how $n$ increasing when $5n^2+2n+1$ is square number.
|
||||
|
||||
| n | increasing rate of n |
|
||||
| ---------- | -------------------- |
|
||||
| 2 | |
|
||||
| 15 | 7.5 |
|
||||
| 104 | 6.933333333 |
|
||||
| 714 | 6.865384615 |
|
||||
| 4895 | 6.855742297 |
|
||||
| 33552 | 6.854341164 |
|
||||
| 229970 | 6.854136862 |
|
||||
| 1576239 | 6.854107057 |
|
||||
| 10803704 | 6.854102709 |
|
||||
| 74049690 | 6.854102075 |
|
||||
| 507544127 | 6.854101982 |
|
||||
| 3478759200 | 6.854101969 |
|
||||
|
||||
it is obvious that the rate of $n$ is converge to $6.8541\cdots$ . with using search engein we know $\varphi^4=6.8541\cdots$ and $\varphi=\frac{\sqrt{5}-1}{2}$.
|
19
python/137.py
Normal file
19
python/137.py
Normal file
@ -0,0 +1,19 @@
|
||||
|
||||
def fib_jump():
|
||||
a, b = 13, 21
|
||||
while True:
|
||||
yield a
|
||||
for i in range(4):
|
||||
a, b = b, a + b
|
||||
|
||||
|
||||
def search(limit):
|
||||
n = 2
|
||||
for jump in fib_jump():
|
||||
yield n
|
||||
n += jump
|
||||
limit -= 1
|
||||
if not limit:
|
||||
return
|
||||
|
||||
print(list(search(15))[-1])
|
Loading…
x
Reference in New Issue
Block a user