update
This commit is contained in:
parent
6fe1881e82
commit
772f1f8d15
@ -2,12 +2,12 @@ $$
|
|||||||
m^3=n^3+n^2p
|
m^3=n^3+n^2p
|
||||||
$$
|
$$
|
||||||
|
|
||||||
let $m=n+k$ , then
|
设 $m=n+k$ ,则
|
||||||
$$
|
$$
|
||||||
3n^2k+3nk^2+k^3=n^2p\\
|
3n^2k+3nk^2+k^3=n^2p\\
|
||||||
(p-3k)n^2-3k^2n-k^3=0
|
(p-3k)n^2-3k^2n-k^3=0
|
||||||
$$
|
$$
|
||||||
witch $p>3k$ . solving this function, we get
|
其中有 $p>3k$ 。解此方程,得
|
||||||
$$
|
$$
|
||||||
n = \frac{3k^2 \pm k\sqrt{4kp-3k^2}}{p-3k}
|
n = \frac{3k^2 \pm k\sqrt{4kp-3k^2}}{p-3k}
|
||||||
$$
|
$$
|
||||||
|
@ -6,33 +6,33 @@ $$
|
|||||||
xA_F(x)= \; x^2F_1+x^3F_2+x^4F_3+\cdots
|
xA_F(x)= \; x^2F_1+x^3F_2+x^4F_3+\cdots
|
||||||
$$
|
$$
|
||||||
|
|
||||||
$(1)+(2)$, and consider that $F_1=F_2$, then we have
|
(1)+(2),且考虑到 $F_1=F_2$ ,有
|
||||||
$$
|
$$
|
||||||
(1+x)A_F(x)=xF_2+x^2F_2+x^3F_3+\cdots
|
(1+x)A_F(x)=xF_2+x^2F_2+x^3F_3+\cdots
|
||||||
$$
|
$$
|
||||||
so
|
所以
|
||||||
$$
|
$$
|
||||||
x(1+x)A_F(x)=A_F(x)-xF_1
|
x(1+x)A_F(x)=A_F(x)-xF_1
|
||||||
$$
|
$$
|
||||||
then
|
即
|
||||||
$$
|
$$
|
||||||
A_F(x)=\frac{x}{1-x-x^2}
|
A_F(x)=\frac{x}{1-x-x^2}
|
||||||
$$
|
$$
|
||||||
we want that $A_F(x)$ could be a nature number, so let
|
想要 $A_F(x)$ 是自然数,只需设
|
||||||
$$
|
$$
|
||||||
\frac{x}{1-x-x^2}=n
|
\frac{x}{1-x-x^2}=n
|
||||||
$$
|
$$
|
||||||
then
|
即
|
||||||
$$
|
$$
|
||||||
nx^2+(n+1)x-n=0
|
nx^2+(n+1)x-n=0
|
||||||
$$
|
$$
|
||||||
solve this, get
|
解此方程,得
|
||||||
$$
|
$$
|
||||||
x=\frac{\sqrt{5n^2+2n+1}-(n+1)}{2n}
|
x=\frac{\sqrt{5n^2+2n+1}-(n+1)}{2n}
|
||||||
$$
|
$$
|
||||||
only $5n^2+2n+1$ is square number that can make x to be a rational.
|
只有 $5n^2+2n+1$ 是平方数时, $x$ 才可能是有理数。
|
||||||
|
|
||||||
let's try to analyse how $n$ increasing when $5n^2+2n+1$ is square number.
|
尝试分析 $N=5n^2+2n+1$ 是平方数时, $n$ 的变化规律
|
||||||
|
|
||||||
| n | increasing rate of n |
|
| n | increasing rate of n |
|
||||||
| ---------- | -------------------- |
|
| ---------- | -------------------- |
|
||||||
@ -49,4 +49,4 @@ let's try to analyse how $n$ increasing when $5n^2+2n+1$ is square number.
|
|||||||
| 507544127 | 6.854101982 |
|
| 507544127 | 6.854101982 |
|
||||||
| 3478759200 | 6.854101969 |
|
| 3478759200 | 6.854101969 |
|
||||||
|
|
||||||
it is obvious that the rate of $n$ is converge to $6.8541\cdots$ . with using search engein we know $\varphi^4=6.8541\cdots$ and $\varphi=\frac{\sqrt{5}-1}{2}$.
|
显然 $n$ 的变化率收敛于 $6.8541\cdots$ 。通过搜索引擎可知 $\varphi^4=6.8541\cdots$ 其中 $\varphi=\frac{\sqrt{5}-1}{2}$ 。
|
@ -4,3 +4,9 @@ def factorial(n, multi=1):
|
|||||||
return multi
|
return multi
|
||||||
else:
|
else:
|
||||||
return factorial(n - 1, multi * n)
|
return factorial(n - 1, multi * n)
|
||||||
|
|
||||||
|
def is_root(n, exp=2):
|
||||||
|
root = int(n ** (1 / exp))
|
||||||
|
if root ** exp == n:
|
||||||
|
return root
|
||||||
|
return 0
|
||||||
|
@ -20,12 +20,11 @@ def pow_mod(base, exp, mod):
|
|||||||
|
|
||||||
|
|
||||||
def make_prime(limit):
|
def make_prime(limit):
|
||||||
if limit < 5:
|
|
||||||
if limit < 2: return
|
if limit < 2: return
|
||||||
yield 2
|
yield 2
|
||||||
if limit < 3: return
|
if limit < 3: return
|
||||||
yield 3
|
yield 3
|
||||||
return
|
if limit < 5: return
|
||||||
|
|
||||||
n = (limit + 1) // 6
|
n = (limit + 1) // 6
|
||||||
|
|
||||||
@ -46,8 +45,6 @@ def make_prime(limit):
|
|||||||
a[f::p] = [False] * ((n - f - 1) // p + 1)
|
a[f::p] = [False] * ((n - f - 1) // p + 1)
|
||||||
b[g::p] = [False] * ((n - g - 1) // p + 1)
|
b[g::p] = [False] * ((n - g - 1) // p + 1)
|
||||||
|
|
||||||
yield 2
|
|
||||||
yield 3
|
|
||||||
for i in range(n):
|
for i in range(n):
|
||||||
if b[i]:
|
if b[i]:
|
||||||
yield 6 * i + 5
|
yield 6 * i + 5
|
||||||
|
Loading…
x
Reference in New Issue
Block a user