141 half
This commit is contained in:
parent
2820d50cbe
commit
a3030bc60e
99
python/141.1.py
Normal file
99
python/141.1.py
Normal file
@ -0,0 +1,99 @@
|
||||
from functools import reduce
|
||||
from tools import number_theory
|
||||
from tools import algebra
|
||||
import sys
|
||||
|
||||
def next_lst(lst, std):
|
||||
for i in range(len(lst)):
|
||||
if lst[i] < std[i]:
|
||||
lst[i] += 1
|
||||
lst[:i] = [0] * i
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def implode(p_lst, e_lst):
|
||||
return reduce(lambda x, y: x * (y[0] ** y[1]), zip(p_lst, e_lst), 1)
|
||||
|
||||
def factor(k):
|
||||
p = 2
|
||||
p_lst = []
|
||||
e_lst = []
|
||||
while p ** 2 <= k:
|
||||
if not k % p:
|
||||
e = 0
|
||||
while not k % p:
|
||||
e += 1
|
||||
k //= p
|
||||
p_lst.append(p)
|
||||
e_lst.append(e)
|
||||
p += 1
|
||||
if k > 1:
|
||||
p_lst.append(k)
|
||||
e_lst.append(1)
|
||||
return p_lst, e_lst
|
||||
|
||||
def pow_factor(k):
|
||||
p_lst, e_lst = factor(k)
|
||||
e_lst = list(map(lambda x: x * 2, e_lst))
|
||||
g_lst = [0] * len(e_lst)
|
||||
result = [1]
|
||||
while next_lst(g_lst, e_lst):
|
||||
result.append(implode(p_lst, g_lst))
|
||||
return list(sorted(result))
|
||||
|
||||
def simplify(x, y):
|
||||
d = number_theory.gcd(x, y)
|
||||
return x // d, y // d
|
||||
|
||||
def try_root(rest, a, b):
|
||||
if rest < a:
|
||||
return 0
|
||||
q, r = divmod(rest - a, b)
|
||||
if r:
|
||||
return 0
|
||||
u = algebra.is_root(q, 3)
|
||||
if u != a:
|
||||
return u
|
||||
return 0
|
||||
|
||||
def calc_k(k):
|
||||
n = k ** 2
|
||||
pf = pow_factor(k)
|
||||
lf = len(pf)
|
||||
for i in range(lf):
|
||||
t = pf[i]
|
||||
for j in range(i, lf - i):
|
||||
v = pf[j]
|
||||
rest = n // t // v
|
||||
if rest > 0:
|
||||
if try_root(rest, t, v):
|
||||
return n
|
||||
if try_root(rest, v, t):
|
||||
return n
|
||||
|
||||
def search(limit):
|
||||
for k in range(1, int(limit ** 0.5) + 1):
|
||||
n = calc_k(k)
|
||||
if n:
|
||||
yield n
|
||||
|
||||
def debug(limit):
|
||||
total = 0
|
||||
k = 1
|
||||
n = 1
|
||||
while n < limit:
|
||||
for r in range(1, n):
|
||||
U, V = simplify(n - r, r ** 2)
|
||||
u = algebra.is_root(U, 3)
|
||||
v = algebra.is_root(V, 3)
|
||||
if u * v:
|
||||
total += n
|
||||
print(k, n, r, r*U//V, r*U*U//V//V)
|
||||
k += 1
|
||||
n = k ** 2
|
||||
print(total)
|
||||
|
||||
#print(calc_k(int(sys.argv[1])))
|
||||
#print(sum(search(int(sys.argv[1]))))
|
||||
debug(100000)
|
26
python/141.md
Normal file
26
python/141.md
Normal file
@ -0,0 +1,26 @@
|
||||
$$
|
||||
n=qd+r
|
||||
$$
|
||||
|
||||
显然 $r<d$ ,因此有以下三种可能
|
||||
$$
|
||||
q<r<d \Rightarrow r^2=qd \mbox{ (a)}\\
|
||||
r<q<d \Rightarrow q^2=rd \mbox{ (b)}\\
|
||||
r<d<q \Rightarrow d^2=rq \mbox{ (c)}
|
||||
$$
|
||||
对于 (2.a), $n=r^2+r$ ,$n$ 不可能是平方数。
|
||||
|
||||
无论 (2.b) 或 (2.c),设等比数列公比为 $e$ ,则 (1) 可写为
|
||||
$$
|
||||
n=r^2e^3+r=k^2
|
||||
$$
|
||||
|
||||
设 $e=\frac{u}{v}$ ,其中 $u, v$ 互素且 $u>v$ 。又由于 $e^2r$ 为整数,因此必有 $v^2|r$ ,不妨设 $r=tv^2$ ,由方程 (3) 可化为
|
||||
$$
|
||||
k^2=tv^2+t^2u^3v
|
||||
$$
|
||||
显然 $tv|k$ ,对 (4) 进一步转换,得
|
||||
$$
|
||||
\frac{k^2}{tv}=v+tu^3
|
||||
$$
|
||||
对 $\frac{k^2}{tv}$ 遍历 $k^2$ 的所有因子。
|
Loading…
x
Reference in New Issue
Block a user