This commit is contained in:
xw_y_am@rmbp 2017-09-30 11:03:56 +08:00
parent 2820d50cbe
commit a3030bc60e
2 changed files with 125 additions and 0 deletions

99
python/141.1.py Normal file
View File

@ -0,0 +1,99 @@
from functools import reduce
from tools import number_theory
from tools import algebra
import sys
def next_lst(lst, std):
for i in range(len(lst)):
if lst[i] < std[i]:
lst[i] += 1
lst[:i] = [0] * i
return True
else:
return False
def implode(p_lst, e_lst):
return reduce(lambda x, y: x * (y[0] ** y[1]), zip(p_lst, e_lst), 1)
def factor(k):
p = 2
p_lst = []
e_lst = []
while p ** 2 <= k:
if not k % p:
e = 0
while not k % p:
e += 1
k //= p
p_lst.append(p)
e_lst.append(e)
p += 1
if k > 1:
p_lst.append(k)
e_lst.append(1)
return p_lst, e_lst
def pow_factor(k):
p_lst, e_lst = factor(k)
e_lst = list(map(lambda x: x * 2, e_lst))
g_lst = [0] * len(e_lst)
result = [1]
while next_lst(g_lst, e_lst):
result.append(implode(p_lst, g_lst))
return list(sorted(result))
def simplify(x, y):
d = number_theory.gcd(x, y)
return x // d, y // d
def try_root(rest, a, b):
if rest < a:
return 0
q, r = divmod(rest - a, b)
if r:
return 0
u = algebra.is_root(q, 3)
if u != a:
return u
return 0
def calc_k(k):
n = k ** 2
pf = pow_factor(k)
lf = len(pf)
for i in range(lf):
t = pf[i]
for j in range(i, lf - i):
v = pf[j]
rest = n // t // v
if rest > 0:
if try_root(rest, t, v):
return n
if try_root(rest, v, t):
return n
def search(limit):
for k in range(1, int(limit ** 0.5) + 1):
n = calc_k(k)
if n:
yield n
def debug(limit):
total = 0
k = 1
n = 1
while n < limit:
for r in range(1, n):
U, V = simplify(n - r, r ** 2)
u = algebra.is_root(U, 3)
v = algebra.is_root(V, 3)
if u * v:
total += n
print(k, n, r, r*U//V, r*U*U//V//V)
k += 1
n = k ** 2
print(total)
#print(calc_k(int(sys.argv[1])))
#print(sum(search(int(sys.argv[1]))))
debug(100000)

26
python/141.md Normal file
View File

@ -0,0 +1,26 @@
$$
n=qd+r
$$
显然 $r<d$ 因此有以下三种可能
$$
q<r<d \Rightarrow r^2=qd \mbox{ (a)}\\
r<q<d \Rightarrow q^2=rd \mbox{ (b)}\\
r<d<q \Rightarrow d^2=rq \mbox{ (c)}
$$
对于 (2.a) $n=r^2+r$ $n$ 不可能是平方数。
无论 (2.b) 或 (2.c),设等比数列公比为 $e$ ,则 (1) 可写为
$$
n=r^2e^3+r=k^2
$$
设 $e=\frac{u}{v}$ ,其中 $u, v$ 互素且 $u>v$ 。又由于 $e^2r$ 为整数,因此必有 $v^2|r$ ,不妨设 $r=tv^2$ ,由方程 (3) 可化为
$$
k^2=tv^2+t^2u^3v
$$
显然 $tv|k$ ,对 (4) 进一步转换,得
$$
\frac{k^2}{tv}=v+tu^3
$$
对 $\frac{k^2}{tv}$ 遍历 $k^2$ 的所有因子。