''' n = p1^k1 * p2^k2 * ... * pn^kn then the diffrent solve number is ((2k1+1)(2k2+1)...(2kn+1)) / 2 ''' import math from functools import reduce from tools import number_theory def updateList(limit, lst): lst[0] = int(limit / reduce(lambda x, y: x * (2 * y + 1), lst[1:], 1) - 0.5) + 1 lst[0] = max(lst[:2]) def genList(limit, size): result = [] base = [0] + [1] * (size - 1) while True: updateList(limit, base) result.append(tuple(base)) if len(set(base)) == 1: break for i in range(1, size): if base[i] < base[0]: base[:i + 1] = [base[i] + 1] * (i + 1) break return result def search(limit): size_max = int(math.log2(limit)) prime = list(number_theory.make_prime(size_max * 2)) mini = 2 ** limit for size in range(2, size_max): mini = min(mini, min( map(lambda x: reduce(lambda x, y: x * (y[0] ** y[1]), zip(prime, x), 1), genList(limit, size) ))) return mini print(search(1000))