$$ m^3=n^3+n^2p $$ 设 $m=n+k$ ,则 $$ 3n^2k+3nk^2+k^3=n^2p\\ (p-3k)n^2-3k^2n-k^3=0 $$ 其中有 $p>3k$ 。解此方程,得 $$ n = \frac{3k^2 \pm k\sqrt{4kp-3k^2}}{p-3k} $$