根据137题有 $$ A_G(x)=\frac{x+3x^2}{1-x-x^2} $$ 所以 $$ (n+3)x^2+(n+1)x-n=0 $$ 解此方程,得 $$ x=\frac{\sqrt{5n^2+14n+1}-(n+1)}{2(n+3)} $$ 只有 $5n^2+14n+1$ 是平方数时, $x$ 才会是有理数。 尝试分析 $N=5n^2+14n+1$ 是平方数时 $n$ 的变化规律 | N | increasing rate of N | | -------- | -------------------- | | 2 | | | 5 | 2.5 | | 21 | 4.2 | | 42 | 2.0 | | 152 | 3.619047619047619 | | 296 | 1.9473684210526316 | | 1050 | 3.5472972972972974 | | 2037 | 1.94 | | 7205 | 3.5370643102601864 | | 13970 | 1.9389312977099236 | | 49392 | 3.535576234788833 | | 95760 | 1.9387755102040816 | | 338546 | 3.535359231411863 | | 656357 | 1.9387527839643652 | | 2320437 | 3.535327573256627 | | 4498746 | 1.9387494683113569 | | 15904520 | 3.535322954441082 | 观察发现 $1.9387\ldots*3.5353\ldots=\frac{\sqrt{5}+1}{2}$. 进一步尝试 $$ 5-2=3 \\ 42-21=21 \\ 296-152=144 $$ $$ 21-5=16=2*8 \\ 152-42=110=2*55 \\ 1050-296=754=2*377 $$ $3,21,144,\ldots,8,55,377\ldots$ 它们都是 Fibonacci 数。