from functools import reduce from tools import number_theory from tools import algebra import sys def next_lst(lst, std): for i in range(len(lst)): if lst[i] < std[i]: lst[i] += 1 lst[:i] = [0] * i return True else: return False def implode(p_lst, e_lst): return reduce(lambda x, y: x * (y[0] ** y[1]), zip(p_lst, e_lst), 1) def factor(k): p = 2 p_lst = [] e_lst = [] while p ** 2 <= k: if not k % p: e = 0 while not k % p: e += 1 k //= p p_lst.append(p) e_lst.append(e) p += 1 if k > 1: p_lst.append(k) e_lst.append(1) return p_lst, e_lst def pow_factor(k): p_lst, e_lst = factor(k) e_lst = list(map(lambda x: x * 2, e_lst)) g_lst = [0] * len(e_lst) result = [1] while next_lst(g_lst, e_lst): result.append(implode(p_lst, g_lst)) return list(sorted(result)) def simplify(x, y): d = number_theory.gcd(x, y) return x // d, y // d def try_root(rest, a, b): if rest < a: return 0 q, r = divmod(rest - a, b) if r: return 0 u = algebra.is_root(q, 3) if u != a: return u return 0 def calc_k(k): n = k ** 2 pf = pow_factor(k) lf = len(pf) for i in range(lf): t = pf[i] for j in range(i, lf - i): v = pf[j] rest = n // t // v if rest > 0: if try_root(rest, t, v): return n if try_root(rest, v, t): return n def search(limit): for k in range(1, int(limit ** 0.5) + 1): n = calc_k(k) if n: yield n def debug(limit): total = 0 k = 1 n = 1 while n < limit: for r in range(1, n): U, V = simplify(n - r, r ** 2) u = algebra.is_root(U, 3) v = algebra.is_root(V, 3) if u * v: total += n print(k, n, r, r*U//V, r*U*U//V//V) k += 1 n = k ** 2 print(total) #print(calc_k(int(sys.argv[1]))) #print(sum(search(int(sys.argv[1])))) debug(100000)