2017-09-30 11:03:38 +08:00

53 lines
1.2 KiB
Markdown

根据137题有
$$
A_G(x)=\frac{x+3x^2}{1-x-x^2}
$$
所以
$$
(n+3)x^2+(n+1)x-n=0
$$
解此方程,得
$$
x=\frac{\sqrt{5n^2+14n+1}-(n+1)}{2(n+3)}
$$
只有 $5n^2+14n+1$ 是平方数时, $x$ 才会是有理数。
尝试分析 $N=5n^2+14n+1$ 是平方数时 $n$ 的变化规律
| N | increasing rate of N |
| -------- | -------------------- |
| 2 | |
| 5 | 2.5 |
| 21 | 4.2 |
| 42 | 2.0 |
| 152 | 3.619047619047619 |
| 296 | 1.9473684210526316 |
| 1050 | 3.5472972972972974 |
| 2037 | 1.94 |
| 7205 | 3.5370643102601864 |
| 13970 | 1.9389312977099236 |
| 49392 | 3.535576234788833 |
| 95760 | 1.9387755102040816 |
| 338546 | 3.535359231411863 |
| 656357 | 1.9387527839643652 |
| 2320437 | 3.535327573256627 |
| 4498746 | 1.9387494683113569 |
| 15904520 | 3.535322954441082 |
观察发现 $1.9387\ldots*3.5353\ldots=\frac{\sqrt{5}+1}{2}$.
进一步尝试
$$
5-2=3 \\
42-21=21 \\
296-152=144
$$
$$
21-5=16=2*8 \\
152-42=110=2*55 \\
1050-296=754=2*377
$$
$3,21,144,\ldots,8,55,377\ldots$ 它们都是 Fibonacci 数。