53 lines
1.2 KiB
Markdown
53 lines
1.2 KiB
Markdown
根据137题有
|
|
$$
|
|
A_G(x)=\frac{x+3x^2}{1-x-x^2}
|
|
$$
|
|
|
|
所以
|
|
$$
|
|
(n+3)x^2+(n+1)x-n=0
|
|
$$
|
|
解此方程,得
|
|
$$
|
|
x=\frac{\sqrt{5n^2+14n+1}-(n+1)}{2(n+3)}
|
|
$$
|
|
只有 $5n^2+14n+1$ 是平方数时, $x$ 才会是有理数。
|
|
|
|
尝试分析 $N=5n^2+14n+1$ 是平方数时 $n$ 的变化规律
|
|
|
|
| N | increasing rate of N |
|
|
| -------- | -------------------- |
|
|
| 2 | |
|
|
| 5 | 2.5 |
|
|
| 21 | 4.2 |
|
|
| 42 | 2.0 |
|
|
| 152 | 3.619047619047619 |
|
|
| 296 | 1.9473684210526316 |
|
|
| 1050 | 3.5472972972972974 |
|
|
| 2037 | 1.94 |
|
|
| 7205 | 3.5370643102601864 |
|
|
| 13970 | 1.9389312977099236 |
|
|
| 49392 | 3.535576234788833 |
|
|
| 95760 | 1.9387755102040816 |
|
|
| 338546 | 3.535359231411863 |
|
|
| 656357 | 1.9387527839643652 |
|
|
| 2320437 | 3.535327573256627 |
|
|
| 4498746 | 1.9387494683113569 |
|
|
| 15904520 | 3.535322954441082 |
|
|
|
|
观察发现 $1.9387\ldots*3.5353\ldots=\frac{\sqrt{5}+1}{2}$.
|
|
|
|
进一步尝试
|
|
$$
|
|
5-2=3 \\
|
|
42-21=21 \\
|
|
296-152=144
|
|
$$
|
|
|
|
$$
|
|
21-5=16=2*8 \\
|
|
152-42=110=2*55 \\
|
|
1050-296=754=2*377
|
|
$$
|
|
|
|
$3,21,144,\ldots,8,55,377\ldots$ 它们都是 Fibonacci 数。 |