ProjectEuler/c++/26.cpp
2013-04-17 14:34:39 +08:00

57 lines
1.2 KiB
C++

/** A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
1/2 = 0.5
1/3 = 0.(3)
1/4 = 0.25
1/5 = 0.2
1/6 = 0.1(6)
1/7 = 0.(142857)
1/8 = 0.125
1/9 = 0.(1)
1/10 = 0.1
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part. */
#include "0.hpp"
const int _max = 10000;
int cycle(int num)
{
int mod[_max] = {0};
int temp = 10;
int count = 0;
int flag = 1;
do {
if(temp == 0) break;
if(temp < num) temp *= 10;
//cout << temp / num;
temp %= num;
mod[count] = temp;
for(int i = 0; i <= count - 1; i++)
if(temp == mod[i]) {
flag = 0;
count -= i;
count--;
}
count++;
} while(flag);
//cout << '\t' << count << endl;
return count;
}
int main()
{
int max[2] = {0, 0};
for(int i = 2; i <= _max; i++) {
//cout << i << '\t';
int temp = cycle(i);
if(temp > max[1]) {
max[0] = i;
max[1] = temp;
}
}
cout << max[0] << '\t' << max[1] << endl;
return 0;
}