ProjectEuler/c++/21.cpp
2013-04-17 14:34:39 +08:00

35 lines
1021 B
C++

/** Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000. */
#include "0.hpp"
#define _max 10000
uu ami(uu x)
{
uu test = 1;
uu sqr = (uu)(sqrt((double)x) + _eps);
if(x == sqr * sqr) test += sqr;
for(uu i = 2; i < sqr; i++)
if(x % i == 0) {
test += i + x / i;
//cout << i << endl << x / i <<endl;
}
return test;
}
int main()
{
uu sum = 0;
for(uu temp = 100; temp <= _max; temp++) {
uu amip = ami(temp);
if(temp == ami(amip) && temp - amip) {
//cout << temp << '\t' << amip << endl;
sum += amip + temp;
}
}
cout << sum / 2 << endl;
return 0;
}