46 lines
1012 B
Python
46 lines
1012 B
Python
|
|
from functools import reduce
|
|
from tools import number_theory
|
|
|
|
g_prime = list(number_theory.make_prime(1000000))
|
|
|
|
def find_a_factor(num, prime):
|
|
while prime:
|
|
p = prime.pop(0)
|
|
if not (num % p):
|
|
return p, prime
|
|
return 0, []
|
|
|
|
def factor_num(num):
|
|
global g_prime
|
|
for i, value in enumerate(g_prime):
|
|
if value ** 2 > num:
|
|
break
|
|
prime = g_prime[:i]
|
|
|
|
factors = {}
|
|
while True:
|
|
factor, prime = find_a_factor(num, prime)
|
|
if factor:
|
|
count = 0
|
|
while not (num % factor):
|
|
num //= factor
|
|
count += 1
|
|
factors[factor] = count
|
|
else:
|
|
if 1 != num:
|
|
factors[num] = 1
|
|
return factors
|
|
|
|
def tri_num():
|
|
x = 2
|
|
while True:
|
|
yield x * (x + 1) // 2
|
|
x += 1
|
|
|
|
for x in tri_num():
|
|
factor_count = reduce(lambda x, y: x * (y + 1), factor_num(x).values(), 1)
|
|
if factor_count > 500:
|
|
print(x)
|
|
break
|